Grothbennett2797
ating habitats. As A. chlamydospora and P. terricola positively affected the total biomass, root biomass, and active ingredient content of host plants under drought stress, they may have important uses as promoters for the cultivation of licorice in dryland agriculture.Pancreatic beta (β)-cell dysfunction and reduced mass play a central role in the development and progression of diabetes mellitus. Conventional histological β-cell mass (BCM) analysis is invasive and limited to cross-sectional observations in a restricted sampling area. However, the non-invasive evaluation of BCM remains elusive, and practical in vivo and clinical techniques for β-cell-specific imaging are yet to be established. The lack of such techniques hampers a deeper understanding of the pathophysiological role of BCM in diabetes, the implementation of personalized BCM-based diabetes management, and the development of antidiabetic therapies targeting BCM preservation and restoration. Nuclear medical techniques have recently triggered a major leap in this field. In particular, radioisotope-labeled probes using exendin peptides that include glucagon-like peptide-1 receptor (GLP-1R) agonist and antagonist have been employed in positron emission tomography and single-photon emission computed tomography. These probes have demonstrated high specificity to β cells and provide clear images accurately showing uptake in the pancreas and transplanted islets in preclinical in vivo and clinical studies. One of these probes, 111indium-labeled exendin-4 derivative ([Lys12(111In-BnDTPA-Ahx)]exendin-4), has captured the longitudinal changes in BCM during the development and progression of diabetes and under antidiabetic therapies in various mouse models of type 1 and type 2 diabetes mellitus. GLP-1R-targeted imaging is therefore a promising tool for non-invasive BCM evaluation. This review focuses on recent advances in non-invasive in vivo β-cell imaging for BCM evaluation in the field of diabetes; in particular, the exendin-based GLP-1R-targeted nuclear medicine techniques.In fine-needle aspirations (FNA) of thyroid, Hürthle cells can be found in a broad spectrum of lesions, ranging from non-neoplastic conditions to aggressive malignant tumors. Recognize them morphologically, frequently represents a challenging for an adequately diagnosis and are associated with a significant interobserver variability. Although the limitations of the morphologic diagnosis still exist, the interpretation of the context where the cells appear and the recent advances in the molecular knowledge of Hürthle cells tumors are contributing for a more precise diagnosis. This review aims to describe the cytology aspects of all Hürthle cells neoplastic and non-neoplastic thyroid lesions, focusing on the differential diagnosis and reporting according to The Bethesda System for Reporting Thyroid Cytology (TBSRTC). New entities according to the latest World Health Organization (WHO) classification are included, as well as an update of the current molecular data.Fascin-1 (FSCN1) is an actin-bundling protein associated with an invasive and aggressive phenotype of several solid carcinomas, as it is involved in cell cytoskeleton rearrangement and filopodia formation. Adrenocortical carcinoma (ACC) is a rare endocrine malignancy characterized by poor prognosis, particularly when metastatic at diagnosis. Radical resection is the only therapeutic option for ACC patients in addition to the adjuvant treatment with mitotane. Novel specific biomarkers suggestive of tumor progression to refine diagnosis and prognosis of patients with advanced ACC are urgently needed. ACC intratumoral FSCN1 has previously been suggested as a valid prognostic marker. In the present study, we identified FSCN1 in the bloodstream of a small cohort of ACC patients (n = 27), through a specific ELISA assay for human FSCN1. FSCN1 can be detected in the serum, and its circulating levels were evaluated in pre-surgery samples, which resulted to be significantly higher in ACC patients from stage I/II and stage III/IV compared with nontumoral healthy controls (HC, n = 4, FI 5.5 ± 0.8, P less then 0.001, and 8.0 ± 0.5, P less then 0.001 for stage I/II and stage III/IV group vs HC, respectively). In particular, FSCN1 levels were significantly higher in advanced stage versus stage I/II (22.8 ± 1.1 vs 15.8 ± 1.8 ng/ml, P less then 0.005, respectively). Interestingly, circulating levels of pre-surgical FSCN1 can significantly predict tumor progression/recurrence (Log rank = 0.013), but not the overall survival (Log rank=0.317), in patients stratified in high/low PreS FSCN1. In conclusion, these findings-though very preliminary-suggest that circulating FSCN1 may represent a new minimally-invasive prognostic marker in advanced ACC, in particular when measured before surgery enables histological diagnosis.Thermal and chemical ablation are minimally invasive procedures that avoid removal of the thyroid gland and target symptomatic nodules directly. Internationally, Radiofrequency ablation (RFA) is among one of the most widely used thermal ablative techniques, and is gaining traction in North America. Surgery remains the standard of care for most thyroid cancer, and in the right clinical setting, Active Surveillance (AS) can be a reasonable option for low risk disease. Minimally invasive techniques have emerged as an alternative option for patients deemed high risk for surgery, or for those patients who wish to receive a more active treatment approach compared to AS. Herein, we review the literature on the safety and efficacy of RFA for treating benign non-functioning thyroid nodules, autonomously functioning thyroid nodules, primary small low risk thyroid cancer (namely papillary thyroid cancer) as well as recurrent thyroid cancer.
Biomarkers are needed for patient stratification between benign thyroid nodules (BTN) and thyroid cancer (TC) and identifying metastasis in TC. Though plasma
-glycome profiling has shown potential in the discovery of biomarkers and can provide new insight into the mechanisms involved, little is known about it in TC and BTN. Besides, several studies have indicated associations between abnormal glycosylation and TC. Here, we aimed to explore plasma protein
-glycome of a TC cohort with regard to their applicability to serve as biomarkers.
Plasma protein
-glycomes of TC, BTN, and matched healthy controls (HC) were obtained using a robust quantitative strategy based on MALDI-TOF MS and included linkage-specific sialylation information.
Plasma
-glycans were found to differ between BTN, TC, and HC in main glycosylation features, namely complexity, galactosylation, fucosylation, and sialylation. GSK-3 activity Four altered glycan traits, which were consecutively decreased in BTN and TC, and classification models based on them showed high potential as biomarkers for discrimination between BTN and TC ("moderately accurate" to "accurate").