Grosshwang8276

Z Iurium Wiki

Male hearts had significantly larger infarcts than female hearts, but methylphenidate had no impact on infarct size or postischemic recovery of contractile function in hearts of either sex. These data indicate that methylphenidate does not increase the extent of injury induced by an ischemic insult.(Pro)renin receptor (PRR) contributes to regulating many physiological and pathological processes; however, the role of PRR-mediated signaling pathways in myocardial ischemia/reperfusion injury (IRI) remains unclear. In this study, we used an in vitro model of hypoxia/reoxygenation (H/R) to mimic IRI and carried out PRR knockdown by siRNA and PRR overexpression using cDNA in H9c2 cells. Cell proliferation activity was examined by MTT and Cell Counting Kit-8 (CCK-8) assays. Apoptosis-related factors, autophagy markers and beta-catenin pathway activity were assessed by real-time PCR and western blotting. After 24 h of hypoxia followed by 2 h of reoxygenation, the expression levels of PRR, LC3B-I/II, Beclin1, cleaved caspase-3, cleaved caspase-9 and Bax were upregulated, suggesting that apoptosis and autophagy were increased in H9c2 cells. Contrary to the effects of PRR downregulation, the overexpression of PRR inhibited proliferation, induced apoptosis, increased the expression of pro-apoptotic factors and autophagy markers, and promoted activation of the beta-catenin pathway. Furthermore, all these effects were reversed by treatment with the beta-catenin antagonist DKK-1. Thus, we concluded that PRR activation can trigger H/R-induced apoptosis and autophagy in H9c2 cells through the beta-catenin signaling pathway, which may provide new therapeutic targets for the prevention and treatment of myocardial IRI.Glucocorticoids are known to modulate cardiovascular response during stress conditions. The present study was aimed to test the hypothesis that permissive and/or stimulating effect of GCs is essential for the maintenance of peripheral vascular resistance and for the adequate response of cardiovascular system to stressor exposure. The effects of acute pharmacological adrenalectomy (PhADX) on humoral and cardiovascular parameters were studied in adult Wistar rats under the basal conditions and during the acute restraint stress. Acute PhADX was performed by the administration of metyrapone and aminoglutethimide (100 mg/kg s.c. of each drug) resulting in a suppression of endogenous glucocorticoid synthesis. Blood pressure (BP), heart rate (HR) and core body temperature were measured using radiotelemetry. BP responses to administration of vasoactive agents were determined in pentobarbital-anesthetized animals. PhADX considerably attenuated stress-induced increase of BP, HR and core body temperature. PhADX did not abolish BP and HR lowering effects of ganglionic blocker pentolinium indicating preserved sympathetic function in PhADX rats. BP response to exogenous norepinephrine administration was attenuated in PhADX rats, suggesting reduced sensitivity of cardiovascular system. Suppression of corticosterone synthesis by PhADX increased basal plasma levels of ACTH, aldosterone and plasma renin activity in unstressed animals but there was no further increase of these hormones following stressor exposure. In conclusion, PhADX attenuated stress-induced rise of blood pressure, heart rate and core body temperature indicating an important permissive and/or stimulating role of glucocorticoids in the maintenance of the adequate response of cardiovascular system and thermoregulation to several stimuli including acute exposure to stressor.It is generally accepted that angiotensin II plays an important role in high blood pressure (BP) development in both 2-kidney-1-clip (2K1C) Goldblatt hypertension and partial nephrectomy (NX) model of chronic kidney disease (CKD). C-176 cell line The contribution of sympathetic nervous system and nitric oxide to BP control in these models is less clear. Partial nephrectomy or stenosis of the renal artery was performed in adult (10-week-old) male hypertensive heterozygous Ren-2 transgenic rats (TGR) and normotensive control Hannover Sprague Dawley (HanSD) rats and in Wistar rats. One and four weeks after the surgery, basal blood pressure (BP) and acute BP responses to the consecutive blockade of renin-angiotensin (RAS), sympathetic nervous (SNS), and nitric oxide (NO) systems were determined in conscious rats. Both surgical procedures increased plasma urea, a marker of renal damage; the effect being more pronounced following partial nephrectomy in hypertensive TGR than in normotensive HanSD rats with a substantially smaller effect in Wistar rats after renal artery stenosis. We demonstrated that the renin-angiotensin system does not play so significant role in blood pressure maintenance during hypertension development in either CKD model. By contrast, a more important role is exerted by the sympathetic nervous system, the activity of which is increased in hypertensive TGR-NX in the developmental phase of hypertension, while in HanSD-NX or Wistar-2K1C it is postponed to the established phase. The contribution of the vasoconstrictor systems (RAS and SNS) was increased following hypertension induction. The role of NO-dependent vasodilation was unchanged in 5/6 NX HanSD and in 2K1C Wistar rats, while it gradually decreased in 5/6 NX TGR rats.Experimental studies in animals provide relevant knowledge about pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced injury can alter neuronal, glial cell population, brain vasculature and may lead to molecular, cellular and functional consequences. Regarding to its fundamental role in the formation of new memories, spatial navigation and adult neurogenesis, the majority of studies have focused on the hippocampus. Most recent findings in cranial radiotherapy revealed that hippocampal avoidance prevents radiation-induced cognitive impairment of patients with brain primary tumors and metastases. However, numerous preclinical studies have shown that this problem is more complex. Regarding the fact, that the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is highly important to investigate molecular, cellular and functional changes in different brain regions and their integration at clinically relevant doses and schedules. Here, we provide a literature review in order support the translation of preclinical findings to clinical practice and improve the physical and mental status of patients with brain tumors.

Autoři článku: Grosshwang8276 (Wynn Whitney)