Grayshapiro9385
Head and neck squamous cell carcinoma (HNSCC) is a common cancer in China, which was mainly caused by smoking and HPV infection. With the advancement of molecular research, it is meaningful to explore the biomarkers of HNSCC. LINC01207 (small integral membrane protein 31, also known as SMIM31) is a verified oncogene in colorectal adenocarcinoma. Present study aimed to explore the function of LINC01207 in HNSCC cells. Function assays including EdU, colony formation, TUNEL and JC-1 assay revealed that LINC01207 was an oncogene in HNSCC cells. Next, by some mechanism assays including RIP assay and luciferase reporter assay, miR-5047 was identified as the downstream gene of LINC01207. Subsequently, trinucleotide repeat containing adaptor 6B (TNRC6B) was verified as the target of miR-5047. LINC01207 boosted HNSCC cell proliferation and stemness characteristics via acting as a ceRNA of TNRC6B to bind miR-5047. Then, we identified that transcription of both LINC01207 and TNRC6B was induced by FOXA1, which played a tumor facilitator role in HNSCC cells. In a word, present study uncovered a novel ceRNA mechanism of LINC01207/miR-5047/TNRC6B in HNSCC cells, which might contribute to HNSCC treatment.The Sc(III) MOF-type MFM-300(Sc) is demonstrated in this study to be stable under physiological conditions (PBS), biocompatible (to human skin cells), and an efficient drug carrier for the long-term controlled release (through human skin) of antioxidant ferulate. MFM-300(Sc) also preserves the antioxidant pharmacological effects of ferulate while enhancing the bio-preservation of dermal skin fibroblasts, during the delivery process. These discoveries pave the way toward the extended use of Sc(III)-based MOFs as drug delivery systems (DDSs).Graphene-based substrates are emerging as a promising functional platform for biomedical applications. Although dispersible graphene sheets have been demonstrated to be biodegradable, their assembled macroscopic architectures are biopersistent because of strong π-π interactions. In this study, we developed a nacre-inspired graphene-silk nanocomposite film by vacuum filtration with a subsequent green chemical reduction procedure. The "brick-and-mortar" architecture not only ensures the mechanical and electrical properties of the film but also endows it with disintegrable and bioresorbable properties following rat subcutaneous implantation. Furthermore, covalent cross-linking leads to the formation of graphene with decreased interlayer spacing, which effectively prolongs the residence time in vivo. We found that enzymatic treatment created microcracks on the film surface and that the foreign-body reaction was involved in the deformation, delamination, disintegration, and phagocytosis processes of the nanocomposite films. This bioinspired strategy paves the way for the development of high-performance graphene-based macroscopic biomaterials with tunable bioresorbability.Optic atrophy 1 (OPA1), a GTPase at the inner mitochondrial membrane involved in regulating mitochondrial fusion, stability, and energy output, is known to be crucial for neural development Opa1 heterozygous mice show abnormal brain development, and inactivating mutations in OPA1 are linked to human neurological disorders. Here, we used genetically modified human embryonic and patient-derived induced pluripotent stem cells and reveal that OPA1 haploinsufficiency leads to aberrant nuclear DNA methylation and significantly alters the transcriptional circuitry in neural progenitor cells (NPCs). For instance, expression of the forkhead box G1 transcription factor, which is needed for GABAergic neuronal development, is repressed in OPA1+/- NPCs. Supporting this finding, OPA1+/- NPCs cannot give rise to GABAergic interneurons, whereas formation of glutamatergic neurons is not affected. Taken together, our data reveal that OPA1 controls nuclear DNA methylation and expression of key transcription factors needed for proper neural cell specification.Spin waves offer promising perspectives as information carriers for future computational architectures beyond conventional complementary metal-oxide-semiconductor (CMOS) technology, owing to their benefits for device minimizations and low-ohmic losses. Although plenty of magnonic devices have been proposed previously, scalable nanoscale networks based on spin waves are still missing. Here, we demonstrate a reprogrammable two-dimensional spin wave network by combining the chiral exchange spin waves and chiral domain walls. The spin-wave network can be extended to two dimensions and offers unprecedented control of exchange spin waves. Each cell in the network can excite, transmit, and detect spin waves independently in the chiral domain wall, and spin-wave logics are also demonstrated. Our results open up perspectives for integrating spin waves into future logic and computing circuits and networks.The phytopathogen Erwinia carotovora carotovora (Ecc) has been used successfully to decipher some of the mechanisms that regulate the interactions between Drosophila melanogaster and bacteria, mostly following forced association between the two species. How do Drosophila normally perceive and respond to the presence of Ecc is unknown. Using a fly feeding two-choice assay and video tracking, we show that Drosophila are first attracted but then repulsed by an Ecc-contaminated solution. The initial attractive phase is dependent on the olfactory Gr63a and Gαq proteins, whereas the second repulsive phase requires a functional gustatory system. Genetic manipulations and calcium imaging indicate that bitter neurons and gustatory receptors Gr66a and Gr33a are needed for the aversive phase and that the neuropeptide leukokinin is also involved. We also demonstrate that these behaviors are independent of the NF-κB cascade that controls some of the immune, metabolic, and behavioral responses to bacteria.The transcription factor BMAL1 is a core element of the circadian clock that contributes to cyclic control of genes transcribed by RNA polymerase II. By using biochemical cellular fractionation and immunofluorescence analyses we reveal a previously uncharacterized nucleolar localization for BMAL1. learn more We used an unbiased approach to determine the BMAL1 interactome by mass spectrometry and identified NOP58 as a prominent nucleolar interactor. NOP58, a core component of the box C/D small nucleolar ribonucleoprotein complex, associates with Snord118 to control specific pre-ribosomal RNA (pre-rRNA) processing steps. These results suggest a non-canonical role of BMAL1 in ribosomal RNA regulation. Indeed, we show that BMAL1 controls NOP58-associated Snord118 nucleolar levels and cleavage of unique pre-rRNA intermediates. Our findings identify an unsuspected function of BMAL1 in the nucleolus that appears distinct from its canonical role in the circadian clock system.