Granthambowman7682

Z Iurium Wiki

This work reports on TiN-Ag antimicrobial coatings deposited by d.c. magnetron sputtering on leather used for insoles on the footwear industry, studies involving the antimicrobial properties of Ag-based functionalized leathers by sputtering techniques are shown. The X-ray diffraction (XRD) results suggested the presence of crystalline fcc-TiN phase for the sample without silver, and also a fcc-Ag phase in the samples containing silver. According to the Scanning Electron Microscopy (SEM) analysis, the coatings were homogeneous and dispersed Ag clusters were detected on the surface of samples with silver content above 8 at. %. The Inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis showed that the ionization of silver over time depends on the morphology of the coatings. The samples did not present cytotoxicity and only samples with incorporated silver presented antibacterial and antifungal activity, highlighting the potential of the TiN-Ag insole coatings for diseases such as diabetic foot.The appropriate pressure sensitive adhesion performances at working temperature are vital for the applications of waterborne polyurethane (WPU). Understanding the relationship among rheological behaviors, macromolecular structures and adhesive performances can be very useful to the rational design of waterborne polyurethane pressure sensitive adhesives (WPU-PSAs) for different operating temperatures, as well as other kinds of adhesives. In this study, four kinds of WPU-PSAs were prepared by reacting polypropylene glycol (PPG), hydrogenated hydroxyl-terminated polybutadiene (HHTPB), dimethyl alcohol propionic acid (DMPA), 1,6-hexamethylene diisocyanate (HDI) and four kinds of chain extenders. Gel permeation chromatography (GPC), swelling and rheology tests were used in parallel with an analysis of adhesive performances of the dried films of the adhesives. Results showed that, in addition to the nature of chain extenders playing a role on the rheological behaviors and adhesive performances of polymer, the gel content could be used to adjust the macromolecular structure and molecular weight distribution of polymer, thus distinctly affected the adhesive performances of PSA. The relationship among rheological behaviors, macromolecular structure and adhesive performances was investigated, and the rational design of WPU was achieved with appropriate pressure sensitive adhesion properties for different working temperatures of 25 and 60 °C.The results of ground granulated blast furnace slag (GGBS) tests in alkali-activated systems show that, with its use, it is possible to produce promising materials with the required properties. Unfortunately, GGBS is becoming a scarce commodity on the market, so the effort is to partially replace its volume in these materials with other secondary materials, while maintaining the original properties. This paper focuses on a comparison of two basic types of mixtures. The first mixture was prepared only from ground granulated blast furnace slag (GGBS) and the second type of mixture was prepared with admixtures, where the admixtures formed a total of 30% (15% of the replacement was fly ash after denitrification-FA, and 15% of the replacement was cement by-pass dust-CBPD). These mixtures were prepared with varying amounts of activator and tested. The experiment monitored the development of strength over time and the influence of different types of aggressive environments on the strength characteristics. Thermal analysis and FTIR were used in the experiment to determine the degradation products. The paper provides an interesting comparison of the resistance results of different composites in aggressive environments and at the same time an evaluation of the behavior of individual mixtures in different types of aggressive environment. After 28 days of maturation, the highest strengths were obtained with mixtures with the lowest doses of activator. The difference in these compressive strengths was around 25% in favor of the mixtures with only GGBS; in the case of flexural strength, this difference was around 23%. The largest decreases in strength were achieved in the XA3 environment. This environment contains the highest concentration of sulfate ions according to the EN 206-1 standard. The decreases in compressive strength were 40-45%, compared to the same old reference series. The surface degraded due to sulfate ions. Calcium sulphate dihydrate was identified by FTIR, thermal analysis and SEM as a degradation product.Introducing CO2 electrochemical conversion technology to the iron-making blast furnace not only reduces CO2 emissions, but also produces H2 as a byproduct that can be used as an auxiliary reductant to further decrease carbon consumption and emissions. With adequate H2 supply to the blast furnace, the injection of H2 is limited because of the disadvantageous thermodynamic characteristics of the H2 reduction reaction in the blast furnace. This paper presents thermodynamic analysis of H2 behaviour at different stages with the thermal requirement consideration of an iron-making blast furnace. The effect of injecting CO2 lean top gas and CO2 conversion products H2-CO gas through the raceway and/or shaft tuyeres are investigated under different operating conditions. Sodium ascorbate cost H2 utilisation efficiency and corresponding injection volume are studied by considering different reduction stages. The relationship between H2 injection and coke rate is established. Injecting 7.9-10.9 m3/tHM of H2 saved 1 kg/tHM coke rate, depending on injection position. Compared with the traditional blast furnace, injecting 80 m3/tHM of H2 with a medium oxygen enrichment rate (9%) and integrating CO2 capture and conversion reduces CO2 emissions from 534 to 278 m3/tHM. However, increasing the hydrogen injection amount causes this iron-making process to consume more energy than a traditional blast furnace does.This work aimed at the development of wear and corrosion resistant oxide coatings for medical implants made of zirconium alloy, by plasma electrolytic oxidation (PEO). The effect of sodium silicate and boric acid addition to calcium acetate electrolyte on the coating properties was studied. Different aspects of the PEO coating were investigated microstructure, electrochemical and wear behavior, wettability and apatite-forming ability. The resultant coatings consist of a dense inner layer 1.4-2.2 µm thick and a porous outer layer. The total thickness of the coating is 12-20 µm. It was found that the coating contains the tetragonal zirconia (70-95%). The obtained coatings show high corrosion resistance and reduce the surface corrosion current by 1-3 orders of magnitude, depending on the electrolyte additive, compared to the uncoated surface. The addition of boric acid to the electrolyte significantly increases the wear resistance of the coating and reduces the coefficient of friction. In terms of the combination of the coating characteristics, the electrolyte with the addition of the alkali and boric acid is recommended as the most effective.Noise pollution critically degrades the quality of human life, and its effects are becoming more severe due to rapid population growth and the development of industry and transportation. Acoustic wave aggregation in the 30-8000 Hz band can have a negative impact on human health, especially following continuous exposure to low-frequency noise. This study investigates the acoustic performance of microcellular foams made of a mixture of brittle and soft materials and their potential use as absorption materials. It is common to use porous materials to improve acoustic properties. Specimens prepared by mixing ceramic and urethane were made into microcellular foamed ceramic urethane by a batch process using carbon dioxide. The specimens were expected to exhibit characteristics of porous sound-absorbing materials. After measuring the acoustic characteristics using an impedance tube, a significant sound-absorption coefficient at a specific frequency was noted, a characteristic of a resonance-type sound-absorbing material. However, the sound-absorption properties were generally worse than those before foaming. Differences based on the size, shape, and structure of the pores were also noted. It will be necessary to check the effects of cellular morphological differences on the absorption properties by controlling the variables of the microcellular foaming process in a future study.Aluminium (Al) and titanium (Ti) coatings were applied on AZ91E magnesium alloy using a low-pressure warm spray (WS) method. The deposition was completed using three different nitrogen flow rates (NFR) for both coatings. NFR effects on coating microstructure and other physical properties were systematically studied. Microstructural characterization was performed using scanning electron microscopy (SEM), and the porosity was estimated using two methods-image analysis and X-ray microtomography. The coating adhesion strength, wear resistance, and hardness were examined. The protective properties of the coatings were verified via a salt spray test. Decreasing NFR during coating deposition produced more dense and compact coatings. However, these conditions increased the oxidation of the powder. Al coatings showed lower hardness and wear resistance than Ti coatings, although they are more suitable for corrosion protection due to their low porosity and high compactness.The purpose of this work was to cross-link chloroprene rubber (CR) with silver(I) oxide (Ag2O) and to investigate the properties of the obtained vulcanizates. Silver(I) oxide was chosen as an alternative to zinc oxide (ZnO), which is part of the standard CR cross-linking system. The obtained results show that it is possible to cross-link chloroprene rubber with silver(I) oxide. This is evidenced by the determined vulcametric parameters, equilibrium swelling and elasticity constants. As the Ag2O content in the composition increases, the cross-link density of the vulcanizates also increases. However, the use of 1 phr of Ag2O is insufficient to obtain a suitably extensive network. Exclusively, the incorporation of 2 phr of Ag2O results in obtaining vulcanizates with great cross-link density. The obtained compositions are characterized by good mechanical properties, as evidenced by high tensile strength. The performed thermal analyses-differential scanning calorimetry (DSC) and thermogravimetry (TGA) allowed us to determine the course of composition cross-linking, but also to determine changes in their properties during heating. The results of the thermal analysis confirmed that CR can be cross-linked with Ag2O, and the increasing amount of oxide in the composition increases the degree of cross-linking of vulcanizates. However, the amount of Ag2O in the composition does not affect the processes occurring in the heated vulcanizate.The hydration kinetics of Portland-limestone cement pastes with organic additives in the form of acetic acid and sodium acetate were studied by using solid-state 13C, 27Al and 29Si NMR spectroscopy. The evolution of the relative content of various phases was monitored over the period of one month amorphous and crystalline calcite (in 13C spectra), ettringite, aluminum in C-S-H gel, calcium aluminates and calcium hydroaluminates (in 27Al spectra), as well as alite, belite and silicon in C-S-H gel (in 29Si spectra). The retarding effect of the additives on cement hydration at early age was demonstrated. We show that the kinetics of phase assemblage formation is influenced by the acetate ion adsorption on the surface of the anhydrous cement components and hydrated phases. The kinetics of formation of ettringite in the cement paste, depending on the addition of acetic and or sodium acetate, is discussed in the context of potential thaumasite sulfate attack.

Autoři článku: Granthambowman7682 (Williamson Martin)