Goodvillarreal9266
This work opens the way to the unexplored frontier of microscopic source masses, which will enable studies of fundamental interactions9-11 and provide a path towards exploring the quantum nature of gravity12-15.Observations suggest that mature faults host large earthquakes at much lower levels of stress than their expected static strength1-11. Potential explanations are that the faults are quasi-statically strong but experience considerable weakening during earthquakes, or that the faults are persistently weak, for example, because of fluid overpressure. Here we use numerical modelling to examine these competing theories for simulated earthquake ruptures that satisfy the well known observations of 1-10 megapascal stress drops and limited heat production. In that regime, quasi-statically strong but dynamically weak faults mainly host relatively sharp, self-healing pulse-like ruptures, with only a small portion of the fault slipping at a given time, whereas persistently weak faults host milder ruptures with more spread-out slip, which are called crack-like ruptures. We find that the sharper self-healing pulses, which exhibit larger dynamic stress changes compared to their static stress changes, result in much larger radiated energy than that inferred teleseismically for megathrust events12. By contrast, milder crack-like ruptures on persistently weak faults, which produce comparable static and dynamic stress changes, are consistent with the seismological observations. The larger radiated energy of self-healing pulses is similar to the limited regional inferences available for crustal strike-slip faults. Our findings suggest that either large earthquakes rarely propagate as self-healing pulses, with potential differences between tectonic settings, or their radiated energy is substantially underestimated, raising questions about earthquake physics and the expected shaking from large earthquakes.Polygenic risk scores (PRSs), which often aggregate results from genome-wide association studies, can bridge the gap between initial discovery efforts and clinical applications for the estimation of disease risk using genetics. However, there is notable heterogeneity in the application and reporting of these risk scores, which hinders the translation of PRSs into clinical care. Here, in a collaboration between the Clinical Genome Resource (ClinGen) Complex Disease Working Group and the Polygenic Score (PGS) Catalog, we present the Polygenic Risk Score Reporting Standards (PRS-RS), in which we update the Genetic Risk Prediction Studies (GRIPS) Statement to reflect the present state of the field. Drawing on the input of experts in epidemiology, statistics, disease-specific applications, implementation and policy, this comprehensive reporting framework defines the minimal information that is needed to interpret and evaluate PRSs, especially with respect to downstream clinical applications. Items span detailed descriptions of study populations, statistical methods for the development and validation of PRSs and considerations for the potential limitations of these scores. In addition, we emphasize the need for data availability and transparency, and we encourage researchers to deposit and share PRSs through the PGS Catalog to facilitate reproducibility and comparative benchmarking. By providing these criteria in a structured format that builds on existing standards and ontologies, the use of this framework in publishing PRSs will facilitate translation into clinical care and progress towards defining best practice.Classic approaches to mapping the developmental history of cells in vivo have relied on techniques that require complex interventions and often capture only a single trajectory or moment in time. We have previously described a developmental barcoding system to address these issues using synthetically induced mutations to record information about each cell's lineage in its genome. This system uses MARC1 mouse lines, which have multiple homing guide RNAs that each generate hundreds of mutant alleles and combine to produce an exponential diversity of barcodes. Here, we detail two MARC1 lines that are available from a public repository. We describe strategies for using MARC1 mice and experimental design considerations. We provide a protocol for barcode retrieval and sequencing as well as the analysis of the sequencing data. This protocol generates barcodes based on synthetically induced mutations in mice to enable lineage analysis.Organoid technology has revolutionized the study of human organ development, disease and therapy response tailored to the individual. Although detailed protocols are available for the generation and long-term propagation of human organoids from various organs, such methods are lacking for breast tissue. Here we provide an optimized, highly versatile protocol for long-term culture of organoids derived from either normal human breast tissues or breast cancer (BC) tissues, as well as culturing conditions for a panel of 45 biobanked samples, including BC organoids covering all major disease subtypes (triple-negative, estrogen receptor-positive/progesterone receptor-positive and human epidermal growth receptor 2-positive). Additionally, we provide methods for genetic manipulation by Lipofectamine 2000, electroporation or lentivirus and subsequent organoid selection and clonal culture. Finally, we introduce an optimized method for orthotopic organoid transplantation in mice, which includes injection of organoids and estrogen pellets without the need for surgery. Organoid derivation from tissue fragments until the first split takes 7-21 d; generation of genetically manipulated clonal organoid cultures takes 14-21 d; and organoid expansion for xenotransplantation takes >4 weeks.Gasdermins were recently identified as the mediators of pyroptosis - inflammatory cell death triggered by cytosolic sensing of invasive infection and danger signals. Upon activation, gasdermins form cell membrane pores, which release pro-inflammatory cytokines and alarmins and damage the integrity of the cell membrane. selleck products Roles for gasdermins in autoimmune and inflammatory diseases, infectious diseases, deafness and cancer are emerging, revealing potential novel therapeutic avenues. Here, we review current knowledge of the family of gasdermins, focusing on their mechanisms of action and roles in normal physiology and disease. Efforts to develop drugs to modulate gasdermin activity to reduce inflammation or activate more potent immune responses are highlighted.