Goodemacdonald9149

Z Iurium Wiki

Controllable synthesis of organometallic clusters in the gas phase is a topic of reasonable interest with precisely tunable properties depending on sizes, compositions, and intra-cluster charge-transfer interactions. Here, we have prepared small Agn+ and Cun+ clusters by using a customized magnetron sputtering (MagS) source and observed the gas-phase reactions with 2,2'-bipyridine. It is found that the small silver and copper clusters readily react with bipyridine and form products of [M-bpy1-2]+ (M = Ag, Cu). Quantum chemistry calculations reveal that the bipyridine in both [Ag-bpy1-2]+ and [Cu-bpy1-2]+ takes on cis-conformation with altered N-C-C-N dihedral angles, which is in contrast to the trans-conformation of a free 2,2'-bipyridine molecule itself. In order to unveil the principle of conformational transition, we have fully studied the interactions between the nitrogen atoms of bipyridine and the cationic Ag+ and Cu+, calculated the donor-acceptor orbital overlaps, and analyzed the correlation of their frontier molecular orbital energy levels. Furthermore, by using a soft-landing strategy, we have managed to deposit the [Cu-bpy2]+ complex onto the glass substrates coated with Ag nanoparticles, and recorded the surface-enhanced Raman scattering spectra.Nickel bicarbonate Ni(HCO3)2 has recently been demonstrated to be a highly attractive electrode material for lithium-ion batteries (LIBs) and supercapacitors (SCs), and its electrochemical performance could be further enhanced through rationally tuning the morphology. Herein, Ni(HCO3)2 spheres are successfully prepared via a facile, one-step hydrothermal route. The effects of the hydrothermal duration on the phase and morphology are investigated. XRD patterns indicate a phase conversion from NiCO3 into Ni(HCO3)2 that has never been previously reported. SEM images reveal that the reaction temperature and time play a key role in determining the phase and morphology of the resulting sample. The whole process includes, successively, nucleation, growth, self-assembly, dissolution, and recrystallization. As electrodes, the Ni(HCO3)2 spheres reacted for 15 h, delivering 602.4 mA h g-1 after 300 cycles at 0.2 A g-1 in LIBs and a specific capacitance of 450 F g-1 after 5000 cycles at 5 A g-1 in SCs. These results show strong potential applications in energy storage devices.Terpenoids are an important class of multi-unsaturated volatile organic compounds emitted to the atmosphere. During their oxidation in the troposphere, unsaturated peroxy radicals are formed, which may undergo ring closure reactions by an addition of the radical oxygen atom on either of the carbons in the C[double bond, length as m-dash]C double bond. This study describes a quantum chemical and theoretical kinetic study of the rate of ring closure, finding that the reactions are comparatively fast with rates often exceeding 1 s-1 at room temperature, making these reactions competitive in low-NOx environments and allowing for continued autoxidation by ring closure. A structure-activity relationship (SAR) is presented for 5- to 8-membered ring closure in unsaturated RO2 radicals with aliphatic substituents, with some analysis of the impact of oxygenated substituents. H-migration in the cycloperoxide peroxy radicals formed after the ring closure was found to be comparatively slow for unsubstituted RO2 radicals. In the related cycloperoxide alkoxy radicals, migration of H-atoms implanted on the ring was similarly found to be slower than for non-cyclic alkoxy radicals and is typically not competitive against decomposition reactions that lead to cycloperoxide ring breaking. Ring closure reactions may constitute an important reaction channel in the atmospheric oxidation of terpenoids and could promote continued autoxidation, though the impact is likely to be strongly dependent on the specific molecular backbone.Herein, we demonstrate that the active surface of nanoceria can be fine-tuned by phosphorylated peptides. Accordingly, a colorimetric and fluorometric dual-readout strategy is rationally developed for assaying protein kinase activity. This feature not only enables the versatile monitoring of peptide phosphorylation but also broadens the application scope of nanoceria.A space-confined strategy has been used to control the pyrolysis of two-dimensional (2D) NiCo-MOF@ZIF-L(Zn). A thin SiO2 layer as a confined space could avoid the destruction of the 2D morphology during pyrolysis and expose more active sites. The obtained NiCo-NC material exhibits high ORR and Zn-air battery performance.Extracellular vesicles have shown great potential in drug delivery for clinical applications. However, some obstacles still need to be overcome before their clinical translation, including on demand release of drugs to improve the efficacy and monitoring of the drug release process to ascertain drug dosage. Herein, a pH-triggered fluorescence-switchable extracellular vesicle as a smart nanocarrier is fabricated by loading zwitterionic fluorescent carbon dots (CDs) into macrophage cell-secreted vesicles to achieve improved drug delivery and real-time monitoring of drug release. When circulating in the blood, the zwitterionic CDs loaded in the vesicles can tightly bind the chemotherapeutic drug DOX through electrostatic interactions to avoid premature drug unload. The nanocarriers have a long blood circulation half-life of 15.12 h and a high tumor accumulation of 9.88% ID/g. Meanwhile, the fluorescence of the CDs is in the "off" state due to the fluorescence inner filter effect (IFE) between the DOX and the CDs. When the nanocarriers enter the tumor cells, the low pH of the lysosome leads to charge reversal of the CDs. DOX can be quickly released through electrostatic repulsion and the fluorescence of the CDs turns "on" after the release of the drugs, thus enabling an improved drug delivery and real-time tracking of the drug release process.In recent years, cancer therapy strategies utilizing live tumor-targeting bacteria have presented unique advantages. Engineered bacteria have the particular ability to distinguish tumors from normal tissues with less toxicity. Live bacteria are naturally capable of homing to tumors, resulting in high levels of local colonization because of insufficient oxygen and low pH in the tumor microenvironment. Bacteria initiate their antitumor effects by directly killing the tumor or by activating innate and adaptive antitumor immune responses. The bacterial vectors can be reprogrammed following advanced DNA synthesis, sophisticated genetic bioengineering, and biosensors to engineer microorganisms with complex functions, and then produce and deliver anticancer agents based on clinical needs. However, because of the lack of knowledge on the mechanisms and side effects of microbial cancer therapy, developing such smart microorganisms to treat or prevent cancer remains a significant challenge. In this review, we summarized the potential, status, opportunities and challenges of this growing field. We illustrated the mechanism of tumor regression induced by engineered bacteria and discussed the recent advances in the application of bacteria-mediated cancer therapy to improve efficacy, safety and drug delivery. Finally, we shared our insights into the future directions of tumor-targeting bacteria in cancer therapy.The fast-advancing progress in the research of nanomedicine and microneedle applications in the past two decades has suggested that the combination of the two concepts could help to overcome some of the challenges we are facing in healthcare. They include poor patient compliance with medication and the lack of appropriate administration forms that enable the optimal dose to reach the target site. Nanoparticles as drug vesicles can protect their cargo and deliver it to the target site, while evading the body's defence mechanisms. Unfortunately, despite intense research on nanomedicine in the past 20 years, we still haven't answered some crucial questions, e.g. about their colloidal stability in solution and their optimal formulation, which makes the translation of this exciting technology from the lab bench to a viable product difficult. Dissolvable microneedles could be an effective way to maintain and stabilise nano-sized formulations, whilst enhancing the ability of nanoparticles to penetrate the stratum corneum barrier. Both concepts have been individually investigated fairly well and many analytical techniques for tracking the fate of nanomaterials with their precious cargo, both in vitro and in vivo, have been established. Yet, to the best of our knowledge, a comprehensive overview of the analytical tools encompassing the concepts of microneedles and nanoparticles with specific and successful examples is missing. In this review, we have attempted to briefly analyse the challenges associated with nanomedicine itself, but crucially we provide an easy-to-navigate scheme of methods, suitable for characterisation and imaging the physico-chemical properties of the material matrix.N-doped blue-fluorescence carbon dots (N-CDs) were fabricated via a one-pot hydrothermal method using folic acid and p-phenylenediamine. find more The obtained N-CDs exhibited strong fluorescence (FL) with a considerable quantum yield (QY) of 21.8% and exceptional optical stability under different conditions. Upon introducing Cr(vi), blue FL of N-CDs was distinctly quenched. On subsequent addition of l-AA, the FL of N-CDs could be partially recovered. The fluorescence changes of N-CDs have been utilized to detect Cr(vi) and l-AA in aqueous solutions with linear ranges of 0.10-150 μM and 0.75-2.25 mM, respectively, as well as limit of detection values of 9.4 nM and 25 μM, respectively. Furthermore, as-obtained N-CDs can be extended to monitor the fluctuation of intracellular Cr(vi) and l-AA. More intriguingly, N-CDs can target lysosomes with a satisfactory Pearson correction coefficient of 0.87, which indicates a promising application prospect in the biomedical field.This review provides insight into the rapidly expanding field of metal-based antifungal agents. In recent decades, the antibacterial resistance crisis has caused reflection on many aspects of public health where weaknesses in our medicinal arsenal may potentially be present - including in the treatment of fungal infections, particularly in the immunocompromised and those with underlying health conditions where mortality rates can exceed 50%. Combination of organic moieties with known antifungal properties and metal ions can lead to increased bioavailability, uptake and efficacy. Development of such organometallic drugs may alleviate pressure on existing antifungal medications. Prodigious antimicrobial moieties such as azoles, Schiff bases, thiosemicarbazones and others reported herein lend themselves easily to the coordination of a host of metal ions, which can vastly improve the biocidal activity of the parent ligand, thereby extending the library of antifungal drugs available to medical professionals for treatment of an increasing incidence of fungal infections. Overall, this review shows the impressive but somewhat unexploited potential of metal-based compounds to treat fungal infections.A new edition of [5+1] annulation reaction of maleimides with 2-alkenylphenols has been discovered under a Rh(iii)-catalytic system. The process leads to an efficient synthesis of valued spirocyclic scaffolds bearing an oxygen-containing spiro carbon in a single step and shows a broad substrate scope with good functional group tolerance. The synthetic utility has been exemplified by synthesizing highly functionalized 2,2-disubstituted-2H-chromene skeletons and a gram-scale synthesis with a low catalyst loading.

Autoři článku: Goodemacdonald9149 (Pace Calderon)