Goldsteinpatton9824

Z Iurium Wiki

7 m/s.Reinforcement learning from demonstration (RLfD) is considered to be a promising approach to improve reinforcement learning (RL) by leveraging expert demonstrations as the additional decision-making guidance. However, most existing RLfD methods only regard demonstrations as low-level knowledge instances under a certain task. Demonstrations are generally used to either provide additional rewards or pretrain the neural network-based RL policy in a supervised manner, usually resulting in poor generalization capability and weak robustness performance. Considering that human knowledge is not only interpretable but also suitable for generalization, we propose to exploit the potential of demonstrations by extracting knowledge from them via Bayesian networks and develop a novel RLfD method called Reinforcement Learning from demonstration via Bayesian Network-based Knowledge (RLBNK). The proposed RLBNK method takes advantage of node influence with the Wasserstein distance metric (NIW) algorithm to obtain abstract concepts from demonstrations and then a Bayesian network conducts knowledge learning and inference based on the abstract data set, which will yield the coarse policy with corresponding confidence. Once the coarse policy's confidence is low, another RL-based refine module will further optimize and fine-tune the policy to form a (near) optimal hybrid policy. Experimental results show that the proposed RLBNK method improves the learning efficiency of corresponding baseline RL algorithms under both normal and sparse reward settings. 1-PHENYL-2-THIOUREA Furthermore, we demonstrate that our RLBNK method delivers better generalization capability and robustness than baseline methods.In this paper, a deep long short term memory (DeepLSTM) network to classify personality traits using the electroencephalogram (EEG) signals is implemented. For this research, the Myers-Briggs Type Indicator (MBTI) model for predicting personality is used. There are four groups in MBTI, and each group consists of two traits versus each other; i.e., out of these two traits, every individual will have one personality trait in them. We have collected EEG data using a single NeuroSky MindWave Mobile 2 dry electrode unit. For data collection, 40 Hindi and English video clips were included in a standard database. All clips provoke various emotions, and data collection is focused on these emotions, as the clips include targeted, inductive scenes of personality. Fifty participants engaged in this research and willingly agreed to provide brain signals. We compared the performance of our deep learning DeepLSTM model with other state-of-the-art-based machine learning classifiers such as artificial neural network (ANN), K-nearest neighbors (KNN), LibSVM, and hybrid genetic programming (HGP). The analysis shows that, for the 10-fold partitioning method, the DeepLSTM model surpasses the other state-of-the-art models and offers a maximum classification accuracy of 96.94%. The proposed DeepLSTM model was also applied to the publicly available ASCERTAIN EEG dataset and showed an improvement over the state-of-the-art methods.A new modification of multi-CNN ensemble training is investigated by combining multiloss functions from state-of-the-art deep CNN architectures for leaf image recognition. We first apply the U-Net model to segment leaf images from the background to improve the performance of the recognition system. Then, we introduce a multimodel approach based on a combination of loss functions from the EfficientNet and MobileNet (called as multimodel CNN (MMCNN)) to generalize a multiloss function. The joint learning multiloss model designed for leaf recognition allows each network to perform its task and cooperate with the others simultaneously, where knowledge from various trained deep networks is shared. This cooperation-proposed multimodel is forced to deal with more complicated problems rather than a simple classification. Therefore, the network can learn much rich information and improve its generalization capability. Furthermore, a multiloss trade-off strategy between two deep learning models can reduce the effect of redundancy problems in ensemble classifiers. The performance of our approach is evaluated by our custom Vietnamese herbal leaf species dataset, and public datasets such as Flavia, Leafsnap, and Folio are used to build test cases. The results confirm that our approach enhances the leaf recognition performance and outperforms the current standard single networks while having less low computation cost.For the first time and by using an entire sample, we discussed the estimation of the unknown parameters θ 1, θ 2, and β and the system of stress-strength reliability R=P(Y less then X) for exponentiated inverted Weibull (EIW) distributions with an equivalent scale parameter supported eight methods. We will use maximum likelihood method, maximum product of spacing estimation (MPSE), minimum spacing absolute-log distance estimation (MSALDE), least square estimation (LSE), weighted least square estimation (WLSE), method of Cramér-von Mises estimation (CME), and Anderson-Darling estimation (ADE) when X and Y are two independent a scaled exponentiated inverted Weibull (EIW) distribution. Percentile bootstrap and bias-corrected percentile bootstrap confidence intervals are introduced. To pick the better method of estimation, we used the Monte Carlo simulation study for comparing the efficiency of the various estimators suggested using mean square error and interval length criterion. From cases of samples, we discovered that the results of the maximum product of spacing method are more competitive than those of the other methods. A two real-life data sets are represented demonstrating how the applicability of the methodologies proposed in real phenomena.With the rapid development of artificial intelligence in recent years, the research on image processing, text mining, and genome informatics has gradually deepened, and the mining of large-scale databases has begun to receive more and more attention. The objects of data mining have also become more complex, and the data dimensions of mining objects have become higher and higher. Compared with the ultra-high data dimensions, the number of samples available for analysis is too small, resulting in the production of high-dimensional small sample data. High-dimensional small sample data will bring serious dimensional disasters to the mining process. Through feature selection, redundancy and noise features in high-dimensional small sample data can be effectively eliminated, avoiding dimensional disasters and improving the actual efficiency of mining algorithms. However, the existing feature selection methods emphasize the classification or clustering performance of the feature selection results and ignore the stability of the feature selection results, which will lead to unstable feature selection results, and it is difficult to obtain real and understandable features. Based on the traditional feature selection method, this paper proposes an ensemble feature selection method, Random Bits Forest Recursive Clustering Eliminate (RBF-RCE) feature selection method, combined with multiple sets of basic classifiers to carry out parallel learning and screen out the best feature classification results, optimizes the classification performance of traditional feature selection methods, and can also improve the stability of feature selection. Then, this paper analyzes the reasons for the instability of feature selection and introduces a feature selection stability measurement method, the Intersection Measurement (IM), to evaluate whether the feature selection process is stable. The effectiveness of the proposed method is verified by experiments on several groups of high-dimensional small sample data sets.Today, the global exchange market has been the world's largest trading market, whose volume could reach nearly 5.345 trillion US dollars, attracting a large number of investors. Based on the perspective of investors and investment institutions, this paper combines theory with practice and creatively puts forward an innovative model of double objective optimization measurement of exchange forecast analysis portfolio. To be more specific, this paper proposes two algorithms to predict the volatility of exchange, which are deep learning and NSGA-II-based dual-objective measurement optimization algorithms for the exchange investment portfolio. Compared with typical traditional exchange rate prediction algorithms, the deep learning model has more accurate results and the NSGA-II-based model further optimizes the selection of investment portfolios and finally gives investors a more reasonable investment portfolio plan. In summary, the proposal of this article can effectively help investors make better investments and decision-making in the exchange market.The purpose of knowledge graph entity disambiguation is to match the ambiguous entities to the corresponding entities in the knowledge graph. Current entity ambiguity elimination methods usually use the context information of the entity and its attributes to obtain the mention embedding vector, compare it with the candidate entity embedding vector for similarity, and perform entity matching through the similarity. The disadvantage of this type of method is that it ignores the structural characteristics of the knowledge graph where the entity is located, that is, the connection between the entity and the entity, and therefore cannot obtain the global semantic features of the entity. To improve the Precision and Recall of entity disambiguation problems, we propose the EDEGE (Entity Disambiguation based on Entity and Graph Embedding) method, which utilizes the semantic embedding vector of entity relationship and the embedding vector of subgraph structure feature. EDEGE first trains the semantic vector of the entity relationship, then trains the graph structure vector of the subgraph where the entity is located, and balances the weights of these two vectors through the entity similarity function. Finally, the balanced vector is input into the graph neural network, and the matching between the entities is output to achieve entity disambiguation. Extensive experimental results proved the effectiveness of the proposed method. Among them, on the ACE2004 data set, the Precision, Recall, and F1 values of EDEGE are 9.2%, 7%, and 11.2% higher than baseline methods.The research on the reverse resource network of e-waste at home and abroad is still in its infancy, and most of it is only based on traditional forward logistics. Reverse resources are the process of moving goods from their typical final destination for recycling value or proper disposal. With the intensification of market competition and the strengthening of environmental protection legislation by the government, reverse resources are no longer a neglected corner in the supply chain. The DLRNN model of the e-waste reverse resource recovery system constructed in this paper can provide an important theoretical and empirical basis for the rational utilization of waste electronic products and fully tap the potential value of waste electronic products, which is of great significance to the recycling of natural resources. In this paper, a hybrid network framework DLRNN based on deep learning (DL) and cyclic neural network (RNN) is designed for problem classification. Experimental results show that the classification accuracy of this framework is improved by 2.

Autoři článku: Goldsteinpatton9824 (Cummings Michelsen)