Golddeleon0100
This review has investigated potential contamination at the farm, industrial processes, and retail levels. Data gaps in the literature are also identified to improve future food safety in the meat industry. Also, a unified risk assessment strategy has been proposed. Further understanding of BPA migration in meat products is needed as a part of the exposure assessment to reduce potential risk, and more data on the dose-response relationship will help comprehend potential adverse health effects of BPA on humans. This research will inform the public, meat producers and processing industry, and policymakers on potential exposure to BPA and risk reduction measures, thus, ensuring food safety.The association between phthalates and early renal injury is largely unknown in adults. We aim to explore the associations of phthalates and hypertension with early renal injury, and the interactive effects of phthalate and hypertension on the early renal injury. This study enrolled 3283 U.S. adults from NHANES 2001-2004. We detected nine phthalate metabolites in spot urine. We also measured the multiple indicators of early renal injury, including albumin-to-creatinine (Cr) ratio (ACR), β2-microglobulin (B2M), cystatin C (CYST), and calculated the estimated glomerular filtration rate (eGFR), including Cr-based eGFR, CYST-based eGFR, and Cr-CYST-based eGFR. Multiple linear regression and multivariable logistic regression were used to explore the associations among urinary phthalate metabolites, hypertension, and the indicators of early renal injury. The results showed that monobenzyl phthalate (MBzP), mono (3-carboxypropyl) phthalate (MCPP), and mono (2-ethylhexyl) phthalate (MEHP) were positively associated with ACR, B2M, CYST and negatively associated with three eGFR. Mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) was positively associated with ACR, with a β value of 0.099 (95% CI 0.046, 0.152). Meanwhile, MEHP was associated with a higher risk of ACR abnormality, with an OR value of 1.258 (95% CI 1.067, 1.482). MBzP, MCPP, and MEOHP increased the risks of ACR, B2M, CYST, and eGFR abnormality. Hypertension was positively associated with ACR, with a β value of 0.460 (95% CI 0.360, 0.561). We also found interactive effects of monoethyl phthalate (MEP), MCPP, MBzP, monobutyl phthalate (MnBP), and hypertension on B2M, CYST, and three kinds of eGFR. Our results indicated that certain phthalate metabolites might contribute to increased risks of early renal injury. The hypertension population may be more sensitive to the early renal injury caused by phthalates exposure than the non-hypertension population.Present in an increasing number of products, UV-filters are continuously discharged into aquatic environments. Despite potential risks for inhabiting organisms are recognized, the effects of UV-filter 4-methylbenzylidenecamphor (4-MBC) on marine invertebrates are poorly investigated. By combining in vitro/in vivo exposures through a multi-biomarker approach on sperms and adults, the present study evaluated how 4-MBC affect the mussel species Mytilus galloprovincialis, providing ecologically relevant information on organisms' responses. From the obtained results, considering mortality as endpoint, sperms revealed a greater sensitivity (EC50347 μg/L) than adults (EC50 not calculable). From an ecotoxicological perspective, this resulted in a derived threshold concentration (LOEC) of 100 μg/L and 72 μg/L, respectively. Effects at the cell/molecular level were provided by general redox-status imbalance and oxidative stress. Sperms showed functional and structural impairments, hyperactivation and DNA damage, while adults showed physiological, metabolic/energetic dysfunctions, DNA damage and activation of oxidative and biotransformation enzymes. High 4-MBC bioaccumulation was also observed in exposed mussels (BCFs14.0-32.0 L/kg). These findings suggest that 4-MBC may impair fitness and survival of the broadcast spawning mussel M. galloprovincialis, affecting reproduction success and population growth.Removal of organic pollutants and pharma products in waste water using semiconductor photocatalysts has gained huge interest among recent days. However, low visible light absorption, recombination rate of charge carriers and less availability of reaction sites are still major obstacles for the photocatalysis process. Herein, an in situ-forming Bi4O5Br2 nanosheets decorated on the surface g-C3N5 were prepared via simple hydrothermal method under ambient temperature. The basic pH condition plays a vital role in growing for Bi4O5Br2 nanosheets. Various characterization studies such as TEM, SEM, PL and UV-DRS studies confirmed the formation of close contact between the Bi4O5Br2 and g-C3N5 nanosheets. The construction of Bi4O5Br2 nanoplatelets/g-C3N5 nanocomposite increases the surface-active sites and improving the separation efficiencies of excitons, which is greatly influenced in the degradation of ciprofloxacin and bisphenol-A pollutants. Meanwhile, the flow of electrons from the layered structured graphite carbon of g-C3N5 which enables excellent electrical contact in the heterojunction. Besides, the main free radicals were determined as e- and •O2-, and production level of free radicals were confirmed by radical trapping experiments. The possible degradation mechanism was proposed and discussed. Finally, this work provides a unique approach to in-situ preparation of heterojunction photocatalysts and demonstrates the prepared Bi4O5Br2 nanoplatelets/g-C3N5 photocatalysts have great potential in the waste water management.To enhance the performance of moving bed biofilm reactor (MBBR) inoculated with heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria, bioaugmentation with Acinetobacter sp. TAC-1 was firstly employed and then the treatment performance for real swine wastewater was presented in this study. Results indicated that NH4+-N and TN removal rates of bioaugmented reactor were significantly improved from 16.53 mg/L/h and 16.15 mg/L/h to 24.58 mg/L/h and 24.45 mg/L/h, respectively. The efficient removal performance (NH4+-N 95.01%, TN 86.40%) for real swine wastewater was achieved within 24 h. Microbial analysis indicated that the composition of functional bacteria varied with the introduction of Acinetobacter sp. TAC-1, especially the abundance of Acinetobacter, Paracoccus and Rhodococcus related to the nitrogen removal. Furthermore, bioaugmentation with Acinetobacter sp. TAC-1 increased abundance of enzymes and functional genes (nirS, nirK and norZ) corresponding to denitrification that may be responsible for the enhanced nitrogen removal performance.Date palm waste biomass is a readily accessible agricultural waste biomass that may be used to produce biogas. Because the complex structure of date palm waste biomass prevents the embedded holo-cellulosic sugars from biodegrading, pretreatment is required to increase methane (CH4) yield. The present investigation aimed to comparatively determine the impact of alkali and ionic liquid pretreatment on the biochemical methane potential (BMP) of different types of date palm waste biomass. The findings revealed that ionic liquid pretreated Palm and Fruit bunch showed the highest BMP (321.67 mL CH4/g-TS) and substrate conversion efficiency (68.01%), respectively, over other biomass samples. In alkali pretreatment, the highest BMP and substrate conversion efficiency were detected with Palm (309.76 mL CH4/g-TS) and Spathe (62.09%). The high BMP and substrate conversion efficiency of date palm waste biomass may be harnessed for bioenergy production when this ionic liquid pretreatment technology is used.This study was conducted to investigate the effects and regulation of dietary vegetable oil (VO, enriched with α-linolenic acid [ALA] and linoleic acid [LNA]) on the nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) pathways in large yellow croaker. In vivo study showed that the VO diet significantly decreased the activity of antioxidant enzymes and antioxidant enzyme-related mRNA expression in the liver tissue, in comparison with the fish oil (FO) diet (P less then 0.05). The suppression of antioxidant capacity might be due to the decrease of nuclear Nrf2 protein translocation, Nrf2 binding to antioxidant response element (ARE) sequences, and subsequently, antioxidant genes transcription as electrophoretic mobility shift assay (EMSA) and luciferase assay showed. VO-derivated ALA and LNA exerted a lower antioxidant capacity than FO-derivated DHA and EPA, characterized by significantly lower nucleus Nfr2 protein expression but significantly higher ROS production values in primary hepatocytes (P less then 0.05). The pro-inflammatory genes (tumor necrosis factor α [TNFα] and interleukin 1β [IL1β]) expression was significantly higher in the liver tissue of fish fed the VO diet which might be due to the activation of the NF-κB pathway (P less then 0.05). Knockdown of the Nrf2 gene negatively affected the anti-inflammatory effect of fatty acids by increasing the expression of TNFα and the IL1β gene and nuclear p65 protein (P less then 0.05). In general, the results indicated that dietary vegetable oil decreased antioxidant capacity but induced inflammatory responses through the Nrf2/NF-κB pathway.Aeromonas hydrophila was a common bacterial pathogen in aquaculture resulting in considerable losses to the striped catfish aquaculture industry. As an emergent antimicrobial peptide (AMP), NK-lysin (NKL) had activity against various microorganisms. However, the antibacterial activity of NKL from striped catfish (Pangasianodon hypophthalmus) both in vitro and vivo remains unclear. In this study, the cDNA sequence of P. hypophthalmus NK-lysin gene (PhNK-lysin) was cloned and characterized. The amino acid sequence of PhNK-lysin contains a signal peptide sequence of 17 amino acid (aa) residues and a mature peptide composed of 130 aa. The saposin B domain of mature peptide comprised six conserved cysteines forming three putative disulfide bonds. Phylogenetic analysis revealed that the PhNK-lysin was most closely related to that of the channel catfish (Ictalurus punctatus) NK-lysin. The transcriptional levels of the PhNK-lysin were significantly upregulated in response to A. hydrophila infection in various tissues including heart, liver, spleen, head kidney, trunk kidney and gill. The synthetic PhNK-lysin-derived peptide consisting of 38aa showed antibacterial activity against Vibrio harveii, Aeromonas hydrophila and Escherichia coli. The MIC for V. harveii, A. hydrophila and E. coli were 15.625 μM, 250 μM and 31.25 μM respectively. Besides, the synthetic PhNK-lysin decreased the bacterial load of liver and trunk kidney in vivo as well as increased the survival rate of A. hydrophila infected striped catfish. Hence, these data suggest that PhNK-lysin had antimicrobial effect and protects the host from pathogenic infection.NLRC3 is identified as a unique regulatory NLR involved in the modulation of cellular processes and inflammatory responses. In this study, a novel Nod like receptor C3 (NLRC3) was functionally characterized from seven band grouper in the context of nervous necrosis virus infection. The grouper NLRC3 is highly conserved and homologous with other vertebrate proteins with a NACHT domain and a C-terminal leucine-rich repeat (LRR) domain and an N-terminal CARD domain. Quantitative gene expression analysis revealed the highest mRNA levels of NLRC3 were in the brain and gill followed by the spleen and kidney following NNV infection. SB 204990 nmr Overexpression of NLRC3 augmented the NNV replication kinetics in primary grouper brain cells. NLRC3 attenuated the interferon responses in the cells following NNV infection by impacting the TRAF6/NF-κB activity and exhibited reduced IFN sensitivity, ISRE promoter activity, and IFN pathway gene expression. In contrast, NLRC3 expression positively regulated the inflammasome response and pro-inflammatory gene expression during NNV infection.