Gofflindhardt9421
4) and nonuniform 135Cs/137Cs ratio. This exemplifies a 137Cs-rich fractionation of the plume in a nuclear explosion, where 137Cs is a predominant species in the fireball. The onset of 135Cs was delayed because of the longer half-life of its parent nuclide 135Xe, causing a spatial separation of gaseous 135Xe from condensed 137Cs, which is the reason for the atypical 135Cs/137Cs fractionation in the fallout at the test site.Activation of [FeCl(dppe)Cp] (1) by chloride abstraction with Na[BArX4] (X = F, [B(3,5-(CF3)2-C6H3)4]; X = Cl, [B(3,5-Cl2-C6H3)4]) permits reactions with a range of nitro aromatics, RC6H4NO2 (R = halogen, Me, OMe, NO2 or NMe2), to give the cationic iron nitroso complexes [FeN(O)-C6H4R(dppe)Cp][BArX4]) ([3][BArX4]). Similar reactions of 1 and Na[BArX4] with [Fe(NCC6H4NO2)(dppe)Cp][BArX4] gave bimetallic [Fe(dppe)Cp2μ-N≡CC6H4N(O)][BArF4]2. However, reactions of 1 and Na[BArX4] with 4-nitrophenol gave the first example of the bench-stable iron half-sandwich phenolate complex [Fe(OC6H4NO2)(dppe)Cp]+ rather than NO2 activation. The formation of complexes [3]+ likely proceeds via the unusual blue bimetallic species [Fe(dppe)Cp2μ,κ2O,O'-O2NAr]2+. This compound undergoes N-O bond cleavage, resulting in [3]+ and a FeIV═O species, which reacts via an internal C-H activation of the dppe ligand to give [FeIII(κ3O,P,P'-P(2-O-C6H4)(Ph)-C2H4-PPh2)Cp]+. Complexes [3]+ are stable under ambient conditions, are readily purified by column chromatography and can be isolated in up to 50% yield, considering that 0.5 equiv of 1 is required as the oxygen acceptor.Small-pore iron silicate MS-1 (Minho-Sofia, solid number 1) with a 3D porous system, an analogue of the rare mineral imandrite, has been synthesized and characterized. This material is the lowest framework density iron silicate, one of the most siliceous (Si/Fe = 6) iron silicates, the first iron cyclosilicate achieved at hydrothermal conditions, and the only synthetic iron-based member of the lovozerite mineral group.The fabrication of covalently cross-linked high-surface-area biopolymeric nanogel fibers by nanopore extrusion is reported for the first time. The biopolymer pullulan was functionalized with tert-butyl acetoacetate via a transesterification reaction to synthesize the water-soluble ketone-rich precursor pullulan acetoacetate (PUAA). PUAA and carbonic dihydrazide (CDH) as cross-linker were extruded through anodic aluminum oxide (AAO) nanoporous membranes, which possessed an average pore diameter of 61 ± 2 nm. By changing the concentration of PUAA, the flow rate, and extrusion time, the step polymerization cross-linking reaction was controlled so that the polymer can be extruded gradually during cross-linking through the membrane, avoiding the formation of macroscopic bulk hydrogels and rupture of the AAO membrane. Fibers with diameters on the order of 250 nm were obtained. This approach was also expanded to functionalized PUAA derivatives together with the fluorogenic substrate 4-methylumbelliferyl-β-d-glucuronide MUGlcU in (PUAA-MUGlcU), which exhibited a mean equilibrium swelling ratio of 5.7 and 9.0 in Milli-Q water and in phosphate-buffered saline, respectively. β-Glucuronidase was sensitively detected via fluorescence of 4-methylumbelliferone, which was liberated in the enzymatic hydrolysis reaction of PUAA-MUGlcU. Compared to hydrogel slabs, the rate of the hydrolysis was >20% higher in the nanogel fibers, facilitating the rapid detection of β-glucuronidase-producing Escherichia coli (E. coli Mach1-T1). Nanopore extruded nanogel fibers are therefore considered a viable approach to enhance the functionality of hydrogels in surface-dominated processes.Engineering photosensitizers into stimuli-responsive supramolecular nanodrugs allows enhanced spatiotemporal delivery and controllable release of photosensitizers, which is promising for dedicated and precise tumor photodynamic therapy. Complicated fabrication for nanodrugs with good tumor accumulation capability and the undesirable side-effects caused by the drug components retards the application of PDT in vivo. The fact that extracellular adenosine triphosphate (ATP) is overexpressed in tumor tissue has been overlooked in fabricating nanomedicines for tumor-targeting delivery. Hence, herein we present metal-free helical nanofibers formed in aqueous solution from the coassembly of a cationic porphyrin and ATP as a nanodrug for PDT. The easily accessible and compatible materials and simple preparation enable the nanodrugs with potential in PDT for cancer. Compared to the cationic porphyrin alone, the porphyrin-ATP nanofibers exhibited enhanced tumor-site photosensitizer delivery through whole-body blood circulation. Overexpressed extracellular ATP stabilizes the porphyrin-ATP nanodrug within tumor tissue, giving rise to enhanced uptake of the nanodrug by cancer cells. The enzyme-triggered release of photosensitizers from the nanodrugs upon biodegradation of ATP by intracellular phosphatases results in good tumor therapeutic efficacy. This study demonstrates the potential for employing the tumor microenvironment to aid the accumulation of nanodrugs in tumors, inspiring the fabrication of smart nanomedicines.Partially covered self-expandable metallic esophageal stent (SEMS) placement is the most frequently applied palliative treatment in esophageal cancer. Structural characterization of explanted 16 nitinol-polyurethane SEMS (the group of 6 females, 10 males, age 40-80) was performed after their removal due to dysfunction. GPR84antagonist8 The adverse bulk changes in the polymer structure were identified using differential scanning calorimetry (DSC), differential mechanical thermal analysis (DMTA), and attenuated total reflectance infrared spectroscopy (ATR-IR) and discussed in terms of melting point shift (9 °C), glass-transition shift (4 °C), differences in viscoelastic behavior, and systematic decrease of peaks intensities corresponding to C-H, C═O, and C-N polyurethane structural bonds. The scanning electron and confocal microscopic observations revealed all major types of surface degradation, i.e., surface cracks, peeling off of the polymer material, and surface etching. The changes in the hydrophobic polyurethane surfaces were also revealed by a significant decrease in wettability (74°) and the corresponding increase of the surface free energy (31 mJ/m2).