Godwinwinters4343

Z Iurium Wiki

We report the synthesis and practical application of a novel scavenger for precious metals. The scavenger was prepared from cellulose filter paper with grafted chains of poly(glycidyl methacrylate) modified with a novel ligand group of N-methyl-2-hydroxyethylcarbamothioate moieties, introduced by the reaction with O-1-mercapto-3-phenoxypropan-2-yl N-methyl-2-hydroxyethylcarbamothioate. Batch experiments were performed to evaluate the capability of the scavenger in ranges of pH and acid concentration as well as to determine the kinetics and isotherm models. The scavenger was found to adsorb only Ag(I), Pd(II), and Au(III) from an aqueous media in the presence of coexisting ions of different bases and precious metals at wide ranges of pH and acid concentration. The adsorption rates fit a pseudo-second-order kinetic equation, and the adsorption reached equilibrium within 60 min. The isotherm studies indicated that the obtained data were a good fit with the Langmuir model. The maximum adsorption capacities of Ag(I), Pd(II), and Au(III) were 126.95, 124.67, and 230.67 mg g-1, respectively. Regeneration experiments indicated that the adsorbent maintained 97% of its initial efficiency even after five adsorption/desorption cycles. The scavenger was effectively utilized to recover Ag(I), Pd(II), and Au(III) from an aqua regia solution of waste printed circuit boards.A simple inorganic/organic nanocomposite was used to generate long-lasting phosphorescent pebbles for easy commercial manufacturing of smart products. An organic/inorganic nanocomposite was made from low-molecular-weight unsaturated polyester and rare-earth-activated strontium aluminum oxide nanoparticles doped with europium and dysprosium. The polyester resin was mixed with phosphorescent strontium aluminate oxide nanoparticles and methylethyl ketone peroxide as a cross-linking agent to create a viscous mixture that can be hardened in a few minutes at room temperature. Before adding the hardener catalyst, the phosphorescent strontium aluminate nanoparticles were dispersed throughout the polyester resin in a homogeneous manner to ensure that the pigment did not accumulate. Long-lasting, reversible luminescence was shown by the photoluminescent substrates. The emission was reported at 515 nm upon exciting the pebble at 365 nm. ATG017 In normal visible light, both blank and luminescent pebbles had a translucent appearance. As a result of UV irradiation, the photoluminescent pebbles produced an intense green color. The three-dimensional CIE Lab (International Commission on Illumination) color coordinates and luminescence spectra were used to investigate the color changing characteristics. Photophysical characteristics, including excitation, emission, and lifetime, were also investigated. Scanning electron microscopy, wavelength-dispersive X-ray fluorescence spectroscopy, and energy-dispersive X-ray analysis were employed to report the surface morphologies and elemental content. Without impairing the pebbles' original physico-mechanical characteristics, the pebbles showed improved superhydrophobic activity. The current simple colorless long-lasting phosphorescent nanocomposite can be applied to a variety of surfaces, like ceramics, glassware, tiles, and metals.Doping plays a significant role in affecting the physical and chemical properties of two-dimensional (2D) dichalcogenide materials. Controllable doping is one of the major factors in the modification of the electronic and mechanical properties of 2D materials. MoS2 2D materials have gained significant attention in gas sensing owing to their high surface-to-volume ratio. However, low response and recovery time hinder their application in practical gas sensors. Herein, we report the enhanced gas response and recovery of Nb-doped MoS2 gas sensor synthesized through physical vapor deposition (PVD) toward NO2 at different temperatures. The electronic states of MoS2 and Nb-doped MOS2 monolayers grown by PVD were analyzed based on their work functions. Doping with Nb increases the work function of MoS2 and its electronic properties. The Nb-doped MoS2 showed an ultrafast response and recovery time of t rec = 30/85 s toward 5 ppm of NO2 at their optimal operating temperature (100 °C). The experimental results complement the electron difference density functional theory calculation, showing both physisorption and chemisorption of NO2 gas molecules on niobium substitution doping in MoS2.The energetic performance of hexanitrohexaazaisowurtzitane (CL-20) was modulated with two energetic coordination polymers (ECPs), [Cu(ANQ)2(NO3)2] and [Ni(CHZ)3](ClO4)2, in this study by a two-step method. First, tannic acid polymerized in situ on the surface of CL-20 crystals. Then, [Cu(ANQ)2(NO3)2] and [Ni(CHZ)3](ClO4)2 were hydrothermally formed on the surface of CL-20/TA, respectively. Explosion performance tests show that the impact sensitivity of the coated structure CL-20/TA/[Cu(ANQ)2(NO3)2] is 58% less than that of CL-20 with no energy decrease. On the other hand, CL-20/TA/[Ni(CHZ)3](ClO4)2 can be initiated by a low laser energy of 107.3 mJ (NdYAG, 1064 nm, 6.5 ns pulse width), whereas CL-20 cannot be initiated by even 4000 mJ laser energy. This study shows that it is feasible to modify the performance of CL-20 by introducing energetic CPs with certain properties, like high energy insensitive, laser-sensitive, etc., which could be a prospective method for designing high energy insensitive energetic materials in the future.Block copolymer (BCP) vesicles loaded with drug molecules may have a nonidentical swelling behavior due to the strong interactions between BCP vesicles and loaded molecules. A thermodynamic study of the swelling for such a system is of great importance in clarifying their pH-gated drug delivery behavior. In this study, the selective swelling of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) vesicles in the presence of different acids was compared using dynamic light scattering, zeta-potential, and isothermal titration calorimetry (ITC) measurements. Transmission electron microscopy observation verified that these PS-b-P2VP vesicles were mainly multilamellar. Importantly, using the ITC measurement, we first compared the thermodynamic parameters, including ΔH, ΔG, and ΔS, association binding sites (N), and binding association constants (K a) in the selective swelling of the PS-b-P2VP vesicles in low pH (pH ∼3.5), with or without a hydrogen bonding interaction. We observed that the existence of a hydrogen bonding interaction between tartaric acid/malic acid and PS-b-P2VP generates a limitation to the selective swelling of PS-b-P2VP vesicles, in which conditions will depend on the molecular structures of the organic acids and PS-b-P2VP. This work first provides a quantitative insight on the swelling of BCP vesicles in the presence of hydrogen bonding and highlights the power of ITC measurements for investigating the structural transformation of polymer nanostructures.Biodiesel is one of the emerging renewable sources of energy to replace fossil-fuel-based resources. It is produced by a transesterification reaction in which a triglyceride reacts with methanol in the presence of a catalyst. The reaction is slow because of the low solubility of methanol in triglycerides, which results in low concentrations of methanol available to react with triglyceride. To speed up the reaction, cosolvents are added to create a single phase which helps to improve the concentration of methanol in the triglyceride phase. In this study, molecular dynamics simulations are used to help understand the role of cosolvents in the solvation of triglyceride (triolein). Six binary mixtures of triolein/cosolvent were used to study the solvation of triolein at 298.15 K. Results of 100 ns simulations at constant temperature and pressure to simulate mixing experiments show that in the first 10 ns all the binary mixtures remain largely unmixed. However, for the cosolvents that are fully miscible with triolein, the partial densities across the simulation boxes show that the systems are fully mixed in the final 10 ns. Some solvents were found to interact strongly with the polar part of triolein, while others interacted with the aliphatic part. The radial distribution functions and clustering of the solvents around triolein were also used as indicators for solvation. The presence of cosolvents also influenced the conformation of triolein molecules. In the presence of solvents that solubilize it, triolein preferred a propeller conformation but took up a trident conformation when there is less or no solubilization. The results show that tetrahydrofuran is the best solvent at solubilizing triolein, followed by cyclopentyl methyl ether, diethyl ether, and hexane. With 1,4-dioxane, the solubility improves with an increase in temperature. The miscibility of a solvent in triolein is aided by its ability to interact with both the polar and nonpolar parts of triolein.Here, a commercially available easy-to-handle oxovanadium(V) compound is demonstrated to serve as an efficient catalyst for the synthesis of ureas from disilylamines and carbon dioxide under ambient pressure. The catalytic activation of carbon dioxide proceeds without any additives, demonstrating a broad substrate scope and easy scalability to validate this catalytic activation of carbon dioxide. This catalytic system can be applied to the synthesis of unsymmetric ureas and chiral urea with retention of chirality.The pyrolysis characteristics of land biomass (corn stalks (Cs), pine sawdust (Ps)) and coastal zone biomass (Jerusalem artichoke stalks (JAs) and reed (Re)) were investigated based on thermogravimetric analysis (TGA) and products' analysis. The kinetic parameters were obtained by three isoconversional methods (Friedman, KAS, and FWO) and one model-fitting method (DAEM). The simultaneous effect of high temperature (700-900 °C) and high heating rate (1000 °C/s) on the pyrolysis product simulating the typical conditions of a fluidized bed gasifier was studied. TGA showed that high heating rates deepen the thermal cracking process of biomass. Compared with the land biomass, the initial decomposition temperature (T i ) of the coastal biomass is reduced significantly owing to its higher proportion of hemicellulose. These methods agree with the trends shown by the activation energy (E a) distribution calculated, with fluctuations between 160 and 350 kJ/mol. The mean value activation energies of Re and JAs were higher than those of Cs and Ps between 10% and 90% conversion. The DAEM model showed that Cs and JAs have a good linear relationship between ln A and E α during the main pyrolysis stage, while Ps and Re are relatively weaker. The kinetic compensation effect was evident for Cs and JAs during the main thermal cracking stage. Py-GC-MS results confirmed that phenols, hydrocarbons, PAHs, and oxygen heterocycle compounds were strongly present in the released volatile products. High-temperature fast pyrolysis of JAs produced a larger amount of PAH compounds than from Cs, Ps, and Re. A larger amount of hydrocarbons and phenols was generated from high-temperature fast pyrolysis of Ps. Some oxygen-containing volatiles are easily converted into aromatic products with higher stability under high temperature.

Autoři článku: Godwinwinters4343 (Hancock McLaughlin)