Glennrahbek3585

Z Iurium Wiki

Epidemiological and experimental studies have suggested that dietary fiber and proanthocyanidins play an important role on gut microbiota (GM), colonic integrity and body health. Type 2 Diabetes Mellitus (T2DM) is a prevalent disease in which the modifications in the GM and colonic markers stand out. This manuscript hypothesizes the consumption of functional meat enriched in carob fruit extract [CFE; CFE-restructured meat (RM)] ameliorates the dysbiosis and colonic barrier integrity loss in a late-stage T2DM rat model induced by the conjoint action of a high-saturated-fat/high-cholesterol diet (Chol-diet) and a low dose of streptozotocin (STZ) plus a nicotinamide (NAD) injection. Three groups of eight rats were used (1) D group, a T2DM control group, fed the Chol-diet; (2) ED group, a T2DM preventive strategy group fed the CFE-Chol-diet since the beginning of the study; and (3) DE group, a T2DM curative treatment group, fed the CFE-Chol-diet once the diabetic state was confirmed. The study lasted 8 weeks. Amohanges and mainly at the distal colonic mucosa. Further studies are needed to confirm this study's results, to ascertain the benefits of consuming proanthocyanidins-rich fiber during different T2DM stages.The plant genus Piper comprises extensively consumed spice taxa like black pepper (P. nigrum L.) or long pepper (P. longum L.). The chronic dietary use of different Piper spices has been associated with different health benefits, though the molecular mechanisms remain poorly understood. The aim of this work was to perform the liquid-chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS) profiling and LC-DAD quantification of piperamides in several Piper species and varieties and study their ability to modulate the endocannabinoid system (ECS). LC-HRMS/MS analysis revealed a number of 42 piperamides grouped into six structural classes, with 22 of them, notably piperine, retrofractamide B, guineensine, piperchabamide C, being also quantified by LC-DAD. limertinib The multivariate analysis showed that P. nigrum and P. longum are very similar with respect to their piperamide profile, while the other Piper spices (P. retrofractum, P. guineense, P. cubeba, P. borbonense) might have significantly different metabolite patterns. The results from the biological assays confirmed that guineensine and total piperamides are strongly correlated with anandamide (AEA) cellular uptake inhibition. While none of the Piper spice extracts showed binding activity at cannabinoid CB1 receptors, some P. nigrum varieties exhibited moderate binding interactions with CB2 receptors. Overall, the analytical profiling enabled global annotations of piperamides associated to cannabimimetic effects in Piper spices.The quality and flavor formation in fermented fish sausages are based on the complex metabolism of microbial community. In this study, the dynamic changes of physicochemical characteristics, volatile compounds, and microbial communities in the naturally fermented tilapia sausage were studied during the fermentation process. The main physical indexes (gel strength, whiteness, and hardness), dominant flavor free amino acids (glycine, alanine, and glutamic acid) and characteristic volatile flavor compounds (hexanal, heptanal, octanal, benzaldehyde, (E)-2-octenal, 4-ethylbenzaldehyde, (E)-2-heptenal, (E,E)-2,4-decadienal, 1-octen-3-ol, 2-pentylfuran, and 2-ethyl-furan) were significantly enhanced after fermentation, and were positively correlated with Lactococcus, Pediococcus, Enterococcus, and Lactobacillus. The microbial metabolic network showed that Lactococcus, Pediococcus, and Enterococcus played a significant role in the formation of physicochemical and flavor characteristics, while the accumulation of biogenic amines might result from the metabolism of Enterococcus, Enterobacter, and Citrobacter. Isolation of lactic acid bacteria in Lactococcus and Pediococcus might be suitable to improve the fermented tilapia sausage. Microbial metabolic network has revealed the physicochemical and flavor formation of tilapia sausage and can provide guidance for future research on screening of starters.While the fruits of Xylopia aethiopica (Dunal) A. Rich. are important in African countries as a local trade product, their composition remains scarcely investigated. Phenolic fingerprint is herein delivered through HPLC-DAD-ESI(Ion Trap)-MSn and UPLC-ESI-QTOF-MS2 analysis, six cinnamoylquinic acid derivatives and twenty-four flavonoid glycosides being determined, chrysoeriol-7-O-glycosides being the main constituents. A cytotoxicity screening of twenty-eight hydroethanol extracts, obtained from a collection of Guinea-Bissauan plants, against A549 and AGS carcinoma cells, revealed the selective and potent effect towards AGS cells (IC50 = 151 × 10-3 g L-1), upon exposure to the extract from X. aethiopica fruits. Additional experiments demonstrated insignificant effect on LDH release at 151 × 10-3 g L-1, morphological analysis further suggesting induction of apoptosis. Pro-apoptotic effects were confirmed, as the extract enabled the activation of the effector caspase-3, broadening the knowledge on the anticancer mechanisms elicited by the fruits of X. aethiopica. Phenolic constituents might contribute to the cytotoxic effects, particularly via caspase-3 activation. Considering that X. aethiopica fruit is very often referred as an anticancer ingredient in Africa, but mainly the potent cytotoxicity herein recorded, our results call for additional research aiming to identify non-phenolic constituents contributing to the effects and also to further detail the anticancer mechanisms.Proteolytic side activity of the lactase preparations (LPs) intended for ultra-high temperature hydrolyzed-lactose milk (UHLM) production induces changes in the product quality during shelf-life. The problem is particularly relevant when the enzyme is added aseptically in the packaging ("in pack" process), while the negative quality effects can be mitigated following the "in batch" process adding the LP before thermal sterilization. In this study, we monitored the quality over time of UHLM produced "in batch" and stored at 4, 20, 30 and 40 °C focusing on proteolysis, volatiles organic compounds (VOCs) formation and color changes. The goal was to identify the key reactions and compounds relevant for the product quality. An increase in storage temperature determined significant changes in the free amino acids profile increasing Strecker aldehydes and methyl ketones formation. At 30 and 40 °C, Maillard reaction and lipid oxidation ended up in a modification of the milk color, whereas at 4 and 20 °C no significant alteration was observed.

Autoři článku: Glennrahbek3585 (Bak McMahan)