Glennlindholm0576

Z Iurium Wiki

CD36 overexpression enhanced NLRP3 activation, which was reduced by MitoTempo. High glucose levels induced a change in the metabolism of HK-2 cells from fatty acid oxidation (FAO) to glycolysis, which promoted mitochondrial ROS (mtROS) production after 72 h. CD36 knockdown increased the level of AMP-activated protein kinase (AMPK) activity and mitochondrial FAO, which was accompanied by the inhibition of NLRP3 and IL-1β. The in vivo experimental results indicate that an inhibition of CD36 could protect diabetic db/db mice from tubulointerstitial inflammation and tubular epithelial cell apoptosis. CD36 mediates mtROS production and NLRP3 inflammasome activation in db/db mice. CD36 inhibition upregulated the level of FAO-related enzymes and AMPK activity in db/db mice. These results suggest that NLRP3 inflammasome activation is mediated by CD36 in renal tubular epithelial cells in DN, which suppresses mitochondrial FAO and stimulates mtROS production.Triple-negative breast cancer (TNBC) has a poor prognosis compared to other breast cancer subtypes. Autophagy inhibitor Although epidermal growth factor receptor (EGFR) is overexpressed in TNBC, clinical trials with EGFR inhibitors including tyrosine kinase inhibitors (EGFR-TKI) in TNBC have heretofore been unsuccessful. To develop effective EGFR-targeted therapy for TNBC, the precise mechanisms of EGFR-TKI resistance in TNBC need to be elucidated. In this study, to understand the molecular mechanisms involved in the differences in EGFR-TKI efficacy on TNBC between human and mouse, we focused on the effect of IL-26, which is absent in mice. In vitro analysis showed that IL-26 activated AKT and JNK signaling of bypass pathway of EGFR-TKI in both murine and human TNBC cells. We next investigated the mechanisms involved in IL-26-mediated EGFR-TKI resistance in TNBC. We identified EphA3 as a novel functional receptor for IL-26 in TNBC. IL-26 induced dephosphorylation and downmodulation of EphA3 in TNBC, which resulted in increased phosphorylation of AKT and JNK against EGFR-TKI-induced endoplasmic reticulum (ER) stress, leading to tumor growth. Meanwhile, the blockade of IL-26 overcame EGFR-TKI resistance in TNBC. Since the gene encoding IL-26 is absent in mice, we utilized human IL-26 transgenic (hIL-26Tg) mice as a tumor-bearing murine model to characterize the role of IL-26 in the differential effect of EGFR-TKI in human and mice and to confirm our in vitro findings. Our findings indicate that IL-26 activates the bypass pathway of EGFR-TKI, while blockade of IL-26 overcomes EGFR-TKI resistance in TNBC via enhancement of ER stress signaling. Our work provides novel insights into the mechanisms of EGFR-TKI resistance in TNBC via interaction of IL-26 with its newly identified receptor EphA3, while also suggesting IL-26 as a possible therapeutic target in TNBC.The molecule mechanisms of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in human diseases have been broadly studied recently, therefore, our research aimed to assess the effect of lncRNA taurine upregulated gene 1 (TUG1)/miR-187-3p/tescalcin (TESC) axis in pituitary adenoma (PA) by regulating the nuclear factor-kappa B (NF-κB) signaling pathway. We observed that TUG1 was upregulated in PA tissues and was associated with invasion, knosp grade and tumor size. TUG1 particularly bound to miR-187-3p. TUG1 knockdown inhibited cell proliferation, invasion, migration, and epithelial-mesenchymal transition, promoted apoptosis, and regulated the expression of NF-κB p65 and inhibitor of κB (IκB)-α in PA cells lines in vitro, and also inhibited tumor growth in vivo, and these effects were reversed by miR-187-3p reduction. Similarly, miR-187-3p elevation inhibited PA cell malignant behaviors and modulated the expression of NF-κB p65 and IκB-α in PA cells, and reduced in vivo tumor growth as well. TUG1 inhibition downregulated TESC, which was targeted by miR-187-3p. In conclusion, this study suggests that TUG1 sponges miR-187-3p to affect PA development by elevating TESC and regulating the NF-κB signaling pathway.Human osteogenic progenitors are not precisely defined, being primarily studied as heterogeneous multipotent cell populations and termed mesenchymal stem cells (MSCs). Notably, select human pericytes can develop into bone-forming osteoblasts. Here, we sought to define the differentiation potential of CD146+ human pericytes from skeletal and soft tissue sources, with the underlying goal of defining cell surface markers that typify an osteoblastogenic pericyte. CD146+CD31-CD45- pericytes were derived by fluorescence-activated cell sorting from human periosteum, adipose, or dermal tissue. Periosteal CD146+CD31-CD45- cells retained canonical features of pericytes/MSC. Periosteal pericytes demonstrated a striking tendency to undergo osteoblastogenesis in vitro and skeletogenesis in vivo, while soft tissue pericytes did not readily. Transcriptome analysis revealed higher CXCR4 signaling among periosteal pericytes in comparison to their soft tissue counterparts, and CXCR4 chemical inhibition abrogated ectopic ossification by periosteal pericytes. Conversely, enrichment of CXCR4+ pericytes or stromal cells identified an osteoblastic/non-adipocytic precursor cell. In sum, human skeletal and soft tissue pericytes differ in their basal abilities to form bone. Diversity exists in soft tissue pericytes, however, and CXCR4+ pericytes represent an osteoblastogenic, non-adipocytic cell precursor. Indeed, enrichment for CXCR4-expressing stromal cells is a potential new tactic for skeletal tissue engineering.Inflammatory processes involving altered microglial activity may play a relevant role in the pathophysiology of depressive disorders. Glial fibrillary acidic protein (GFAP) and calcium-binding protein S100B are considered microglial markers. To date, their role has been studied in the serum and tissue material of patients with unipolar depression but not in the cerebrospinal fluid (CSF). Therefore, the aim of the current study was to examine GFAP and S100B levels in the CSF of patients with major depression to better understand their role in affective disorders. In this retrospective study, 102 patients with unipolar depression and 39 mentally healthy controls with idiopathic intracranial hypertension were investigated. GFAP and S100B levels were measured using commercially available ELISA kits. CSF routine parameters were collected during routine clinical care. The mean values of GFAP and S100B were compared using age (and sex) corrected ANOVAs. Matched subgroups were analyzed by using an independent sample In conclusion, higher GFAP levels in patients with depression may be indicative of altered microglia activity, especially in astrocytes, in patients with unipolar depression. In addition, correlation analyses support the idea that S100B levels could be related to the integrity of the blood-brain/CSF barrier. Further multimodal and longitudinal studies are necessary to validate these findings and clarify the underlying biological processes.The developmental origins of mesenchymal progenitor cells (MPCs) and molecular machineries regulating their fate and differentiation are far from defined owing to their complexity. Osteoblasts and adipocytes are descended from common MPCs. Their fates are collectively determined by an orchestra of pathways in response to physiological and external cues. The canonical Wnt pathway signals MPCs to commit to osteogenic differentiation at the expense of adipogenic fate. In contrast to ß-catenin, p53's anti-osteogenic function is much less understood. Both activities are thought to be achieved through targeting Runx2 and/or Osterix (Osx, Sp7) transcription. Precisely, how Osx activity is dictated by ß-catenin or p53 is not clarified and represents a knowledge gap that, until now, has largely been taken for granted. Using conditional lineage-tracing mice, we demonstrated that chondrocytes gave rise to a sizable fraction of MPCs, which served as progenitors of chondrocyte-derived osteoblasts (Chon-ob). Wnt/ß-catenin c differentiation.Although case-control analyses have suggested an additive value with the association of clarithromycin to continuous lenalidomide and dexamethasone (Rd), there are not phase III trials confirming these results. In this phase III trial, 286 patients with MM ineligible for ASCT received Rd with or without clarithromycin until disease progression or unacceptable toxicity. The primary endpoint was progression-free survival (PFS). With a median follow-up of 19 months (range, 0-54), no significant differences in the median PFS were observed between the two arms (C-Rd 23 months, Rd 29 months; HR 0.783, p = 0.14), despite a higher rate of complete response (CR) or better in the C-Rd group (22.6% vs 14.4%, p = 0.048). The most common G3-4 adverse events were neutropenia [12% vs 19%] and infections [30% vs 25%], similar between the two arms; however, the percentage of toxic deaths was higher in the C-Rd group (36/50 [72%] vs 22/40 [55%], p = 0.09). The addition of clarithromycin to Rd in untreated transplant ineligible MM patients does not improve PFS despite increasing the ≥CR rate due to the higher number of toxic deaths in the C-Rd arm. Side effects related to overexposure to steroids due to its delayed clearance induced by clarithromycin in this elderly population could explain these results. The trial was registered in clinicaltrials.gov with the name GEM-CLARIDEX Ld vs BiRd and with the following identifier NCT02575144. The full trial protocol can be accessed from ClinicalTrials.gov. This study received financial support from BMS/Celgene.Depression is the most prevalent mental disorder with substantial morbidity and mortality. Although genome-wide association studies (GWASs) have identified multiple risk variants for depression, due to the complicated gene regulatory mechanisms and complexity of linkage disequilibrium (LD), the biological mechanisms by which the risk variants exert their effects on depression remain largely unknown. Here, we perform a transcriptome-wide association study (TWAS) of depression by integrating GWAS summary statistics from 807,553 individuals (246,363 depression cases and 561,190 controls) and summary-level gene-expression data (from the dorsolateral prefrontal cortex (DLPFC) of 1003 individuals). We identified 53 transcriptome-wide significant (TWS) risk genes for depression, of which 23 genes were not implicated in risk loci of the original GWAS. Seven out of 53 risk genes (B3GALTL, FADS1, TCTEX1D1, XPNPEP3, ZMAT2, ZNF501 and ZNF502) showed TWS associations with depression in two independent brain expression quantitative loci (eQTL) datasets, suggesting that these genes may represent promising candidates. We further conducted conditional analyses and identified the potential risk genes that driven the TWAS association signal in each locus. Finally, pathway enrichment analysis revealed biologically pathways relevant to depression. Our study identified new depression risk genes whose expression dysregulation may play a role in depression. More importantly, we translated the GWAS associations into risk genes and relevant pathways. Further mechanistic study and functional characterization of the TWS depression risk genes will facilitate the diagnostics and therapeutics for depression.

Autoři článku: Glennlindholm0576 (Dorsey Knapp)