Glennlara7511

Z Iurium Wiki

The impact of EHRs conversion on clinicians' daily work is crucial to evaluate the success of the intervention for Hospitals and to yield valuable insights into quality improvement. To assess the impact of different EHR systems on the preoperative nursing workflow, we used a structured framework combining quantitative time and motion study and qualitative cognitive analysis to characterize, visualize and explain the differences before and after an EHR conversion. The results showed that the EHR conversion brought a significant decrease in the patient case time and a reduced percentage of time using EHR. PreOp nurses spent a higher proportion of time caring for the patient, while the important tasks were completed in a more continuous pattern after the EHR conversion. The workflow variance was due to different nurse's cognitive process and the task time change was reduced because of some new interface features in the new EHR systems.Incompleteness of ontologies affects the quality of downstream ontology-based applications. In this paper, we introduce a novel lexical-based approach to automatically detect potentially missing hierarchical IS-A relations in SNOMED CT. We model each concept with an enriched set of lexical features, by leveraging words and noun phrases in the name of the concept itself and the concept's ancestors. Then we perform subset inclusion checking to suggest potentially missing IS-A relations between concepts. We applied our approach to the September 2017 release of SNOMED CT (US edition) which suggested a total of 38,615 potentially missing IS-A relations. For evaluation, a domain expert reviewed a random sample of 100 missing IS-A relations selected from the "Clinical finding" sub-hierarchy, and confirmed 90 are valid (a precision of 90%). Additional review of invalid suggestions further revealed incorrect existing IS-A relations. Our results demonstrate that systematic analysis of the enriched lexical features of concepts is an effective approach to identify potentially missing hierarchical IS-A relations in SNOMED CT.Large-scale biobank cohorts coupled with electronic health records offer unprecedented opportunities to study genotype-phenotype relationships. Genome-wide association studies uncovered disease-associated loci through univariate methods, with the focus on one trait at a time. With genetic variants being identifiedfor thousands of traits, researchers found that 90% of human genetic loci are associated with more than one trait, highlighting the ubiquity of pleiotropy. Recently, multivariate methods have been proposed to effectively identify pleiotropy. However, the statistical performance in natural biomedical data, which often have unbalanced case-control sample sizes, is largely known. In this work, we designed 21 scenarios of real-data informed simulations to thoroughly evaluate the statistical characteristics of univariate and multivariate methods. Our results can serve as a reference guide for the application of multivariate methods. We also investigated potential pleiotropy across type II diabetes, Alzheimer's disease, atherosclerosis of arteries, depression, and atherosclerotic heart disease in the UK Biobank.Drug combinations targeting multiple targets/pathways are believed to be able to reduce drug resistance. Computational models are essential for novel drug combination discovery. In this study, we proposed a new simplified deep learning model, DeepSignalingSynergy, for drug combination prediction. Compared with existing models that use a large number of chemical-structure and genomics features in densely connected layers, we built the model on a small set of cancer signaling pathways, which can mimic the integration of multi-omics data and drug target/mechanism in a more biological meaningful and explainable manner. The evaluation results of the model using the NCI ALMANAC drug combination screening data indicated the feasibility of drug combination prediction using a small set of signaling pathways. Interestingly, the model analysis suggested the importance of heterogeneity of the 46 signaling pathways, which indicates that some new signaling pathways should be targeted to discover novel synergistic drug combinations.Recently, there has been a growing interest in developing AI-enabled chatbot-based symptom checker (CSC) apps in the healthcare market. Navitoclax CSC apps provide potential diagnoses for users and assist them with self-triaging based on Artificial Intelligence (AI) techniques using human-like conversations. Despite the popularity of such CSC apps, little research has been done to investigate their functionalities and user experiences. To do so, we conducted a feature review, a user review analysis, and an interview study. We found that the existing CSC apps lack the functions to support the whole diagnostic process of an offline medical visit. We also found that users perceive the current CSC apps to lack support for a comprehensive medical history, flexible symptom input, comprehensible questions, and diverse diseases and user groups. Based on these results, we derived implications for the future features and conversational design of CSC apps.Multiple organ dysfunction syndrome (MODS) is one of the major causes of death and long-term impairment in critically ill patients. MODS is a complex, heterogeneous syndrome consisting of different phenotypes, which has limited the development of MODS-specific therapies and prognostic models. We used an unsupervised learning approach to derive novel phenotypes of MODS based on the type and severity of six individual organ dysfunctions. In a large, multi-center cohort of pediatric, young and middle-aged adults admitted to three different intensive care units, we uncovered and characterized three distinct data-driven phenotypes of MODS which were reproducible across age groups, where independently associated with outcomes and had unique predictors of in-hospital mortality.Sharing electronic health records (EHRs) on a large scale may lead to privacy intrusions. Recent research has shown that risks may be mitigated by simulating EHRs through generative adversarial network (GAN) frameworks. Yet the methods developed to date are limited because they 1) focus on generating data of a single type (e.g., diagnosis codes), neglecting other data types (e.g., demographics, procedures or vital signs), and 2) do not represent constraints betweenfeatures. In this paper, we introduce a method to simulate EHRs composed of multiple data types by 1) refining the GAN model, 2) accounting for feature constraints, and 3) incorporating key utility measures for such generation tasks. Our analysis with over 770,000 EHRs from Vanderbilt University Medical Center demonstrates that the new model achieves higher performance in terms ofretaining basic statistics, cross-feature correlations, latent structural properties, feature constraints and associated patterns from real data, without sacrificing privacy.Recent research in predicting protein secondary structure populations (SSP) based on Nuclear Magnetic Resonance (NMR) chemical shifts has helped quantitatively characterise the structural conformational properties of intrinsically disordered proteins and regions (IDP/IDR). Different from protein secondary structure (SS) prediction, the SSP prediction assumes a dynamic assignment of secondary structures that seem correlate with disordered states. In this study, we designed a single-task deep learning framework to predict IDP/IDR and SSP respectively; and multitask deep learning frameworks to allow quantitative predictions of IDP/IDR evidenced by the simultaneously predicted SSP. According to independent test results, single-task deep learning models improve the prediction performance of shallow models for SSP and IDP/IDR. Also, the prediction performance was further improved for IDP/IDR prediction when SSP prediction was simultaneously predicted in multitask models. With p53 as a use case, we demonstrate how predicted SSP is used to explain the IDP/IDR predictions for each functional region.Thought disorder (TD) as reflected in incoherent speech is a cardinal symptom of schizophrenia and related disorders. Quantification of the degree ofTD can inform diagnosis, monitoring, and timely intervention. Consequently, there has been an interest in applying methods ofdistributional semantics to quantify incoherence ofspoken language. Prior studies have generally involved few participants and utilized speech data collected in on-site structured interviews. In this paper we conduct a comprehensive evaluation ofapproaches to quantify incoherence using distributional semantics, including a novel variant that measures the global coherence oftext. This evaluation is conducted in the context of "audio diaries" collected from participants experiencing auditory verbal hallucinations using a smartphone application. Results reveal our novel global coherence metric using the centroid (weighted vector average) outperforms established approaches in their agreement with human annotators, supporting their preferential use in the context of short recordings ofunstructured and largely spontaneous speech.Rule-based Natural Language Processing (NLP) pipelines depend on robust domain knowledge. Given the long tail of important terminology in radiology reports, it is not uncommon for standard approaches to miss items critical for understanding the image. AI techniques can accelerate the concept expansion and phrasal grouping tasks to efficiently create a domain specific lexicon ontology for structuring reports. Using Chest X-ray (CXR) reports as an example, we demonstrate that with robust vocabulary, even a simple NLP pipeline can extract 83 directly mentioned abnormalities (Ave. recall=93.83%, precision=94.87%) and 47 abnormality/normality descriptions of key anatomies. The richer vocabulary enables identification of additional label mentions in 10 out of 13 labels (compared to baseline methods). Furthermore, it captures expert insight into critical differences between observed and inferred descriptions, and image quality issues in reports. Finally, we show how the CXR ontology can be used to anatomically structure labeled output.HIV medication adherence is a topic of major public health concern in the United States. Adherent patients may be less likely to experience treatment failure, AIDS presentations and extreme medical costs. We evaluate a cohort of highly adherent Medicare beneficiaries to establish if the out of pocket costs of HIV medications are an inherent barrier to adherence. We analyzed a 100% sample of Medicare Part-D prescription medications. The drug and out ofpocket costs for HIV and non-HIV medications of highly adherent cohort were extracted and analyzed. The average gross drug cost per beneficiary was $34,029for HIV medications and $11,439for non-HIV medications. Average out of pocket costs per beneficiary was $454for HIV medications and $129 for non-HIV medications. Out of pocket costs do not reasonably appear to be a barrier to adherence for Part-D beneficiaries.In 2016, 13 specific obesity related cancers were identified by IARC. Here, using baseline WHO BMI categories, latent profile analysis (LPA) and latent class trajectory modelling (LCTM) we evaluated the usefulness of one-off measures when predicting cancer risk vs life-course changes. Our results in LPA broadly concurred with the three basic WHO BMI categories, with similar stepwise increase in cancer risk observed. In LCTM, we identified 5 specific trajectories in men and women. Compared to the leanest class, a stepwise increase in risk for obesity related cancer was observed for all classes. When latent class membership was compared to baseline BMI, we found that the trajectories were composed of a range of BMI (baseline) categories. All methods reveal a link between obesity and the 13 cancers identified by IARC. However, the additional information included by LCTM indicates that lifetime BMI may highlight additional group of people that are at risk.

Autoři článku: Glennlara7511 (Davis Slaughter)