Glennknox9644

Z Iurium Wiki

Over the centuries, the geographical distribution of brown bear (Ursus arctos) across the Iberian Peninsula has been decreasing, with the species currently confined to North Iberia. The Cantabrian brown bear population is one of the smallest in Europe and is structured into two subpopulations, positioned along an east-west axis. Given the current critically endangered status of this population, it is essential to have a clear picture of its within-population genetic patterns and processes. We use a set of three molecular markers (mitochondrial DNA, autosomal microsatellites and sex markers) to clarify the genetic origins and assess the migration patterns and gene flow of the Cantabrian brown bear population. Our results reveal the presence of two different mitochondrial (matrilineal) haplotypes in the Cantabrian population, both belonging to European brown bear clade 1a. The two haplotypes are geographically structured between Eastern (haplotype CanE) and Western Cantabrian (haplotype CanW) subpopulations, whprovement, for the conservation of a viable Cantabrian brown bear population.BACKGROUND It remains unclear when standard systematic reviews and meta-analyses that rely on published aggregate data (AD) can provide robust clinical conclusions. We aimed to compare the results from a large cohort of systematic reviews and meta-analyses based on individual participant data (IPD) with meta-analyses of published AD, to establish when the latter are most likely to be reliable and when the IPD approach might be required. METHODS AND FINDINGS We used 18 cancer systematic reviews that included IPD meta-analyses all of those completed and published by the Meta-analysis Group of the MRC Clinical Trials Unit from 1991 to 2010. We extracted or estimated hazard ratios (HRs) and standard errors (SEs) for survival from trial reports and compared these with IPD equivalents at both the trial and meta-analysis level. We also extracted or estimated the number of events. We used paired t tests to assess whether HRs and SEs from published AD differed on average from those from IPD. We assessed agreement, and. Based on these findings, we provide guidance for determining systematically when standard AD meta-analysis will likely generate robust clinical conclusions, and when the IPD approach will add considerable value.Coastal areas are urbanizing at unprecedented rates, particularly in low- and middle-income countries. Combinations of long-standing and emerging problems in these urban areas generate vulnerability for human well-being and ecosystems alike. This baseline study provides a spatially explicit global systematization of these problems into typical urban vulnerability profiles for the year 2000 using largely sub-national data. Using 11 indicator datasets for urban expansion, urban population growth, marginalization of poor populations, government effectiveness, exposures and damages to climate-related extreme events, low-lying settlement, and wetlands prevalence, a cluster analysis reveals a global typology of seven clearly distinguishable clusters, or urban profiles of vulnerability. Each profile is characterized by a specific data-value combination of indicators representing mechanisms that generate vulnerability. Using 21 studies for testing the plausibility, we identify seven key profile-based vulnerabilities for urban populations, which are relevant in the context of global urbanization, expansion, and climate change. We show which urban coasts are similar in this regard. Sensitivity and exposure to extreme climate-related events, and government effectiveness, are the most important factors for the huge asymmetries of vulnerability between profiles. Against the background of underlying global trends we propose entry points for profile-based vulnerability reduction. The study provides a baseline for further pattern analysis in the rapidly urbanizing coastal fringe as data availability increases. We propose to explore socio-ecologically similar coastal urban areas as a basis for sharing experience and vulnerability-reducing measures among them.BACKGROUND Genetic exchange in Trypanosoma cruzi is controversial not only in relation to its frequency, but also to its mechanism. Parasexual genetic exchange has been proposed based on laboratory hybrids, but population genomics strongly suggests meiosis in T. cruzi. In addition, mitochondrial introgression has been reported several times in natural isolates although its mechanism is not fully understood yet. Moreover, hybrid T. cruzi DTUs (TcV and TcVI) have inherited at least part of the kinetoplastic DNA (kDNA = mitochondrial DNA) from both parents. METHODOLOGY/PRINCIPAL FINDINGS In order to address such topics, we sequenced and analyzed fourteen nuclear DNA fragments and three kDNA maxicircle genes in three TcI stocks which are natural clones potentially involved in events of genetic exchange. We also deep-sequenced (a total of 6,146,686 paired-end reads) the minicircle hypervariable region (mHVR) of the kDNA in such three strains. In addition, we analyzed the DNA content by flow cytometry to address cesed.BACKGROUND Optimising the use of antibiotics is a key component of antibiotic stewardship. Respiratory tract infections (RTIs) are the most common reason for antibiotic prescription in children, even though most of these infections in children under 5 years are viral. This study aims to safely reduce antibiotic prescriptions in children under 5 years with suspected lower RTI at the emergency department (ED), by implementing a clinical decision rule. METHODS AND FINDINGS In a stepped-wedge cluster randomised trial, we included children aged 1-60 months presenting with fever and cough or dyspnoea to 8 EDs in The Netherlands. The EDs were of varying sizes, from diverse geographic and demographic regions, and of different hospital types (tertiary versus general). In the pre-intervention phase, children received usual care, according to the Dutch and NICE guidelines for febrile children. During the intervention phase, a validated clinical prediction model (Feverkidstool) including clinical characteristics and C-reeriod due to logistical issues, potentially affecting the power of our study. CONCLUSIONS In this multicentre ED study, we observed that a clinical decision rule for childhood pneumonia did not reduce overall antibiotic prescription, but that it was non-inferior to usual care. Exploratory analyses showed fewer strategy failures and that fewer antibiotics were prescribed in low/intermediate-risk children, suggesting improved targeting of antibiotics by the decision rule. TRIAL REGISTRATION Netherlands Trial Register NTR5326.Oral cholera vaccine (OCV) has increasingly been used as an outbreak control measure, but vaccine shortages limit its application. A two-dose OCV campaign targeting residents aged over 1 year was launched in three rural Communes of Southern Haiti during an outbreak following Hurricane Matthew in October 2016. Door-to-door and fixed-site strategies were employed and mobile teams delivered vaccines to hard-to-reach communities. This was the first campaign to use the recently pre-qualified OCV, Euvichol. The study objective was to estimate post-campaign vaccination coverage in order to evaluate the campaign and guide future outbreak control strategies. We conducted a cluster survey with sampling based on random GPS points. We identified clusters of five households and included all members eligible for vaccination. learn more Local residents collected data through face-to-face interviews. Coverage was estimated, accounting for the clustered sampling, and 95% confidence intervals calculated. 435 clusters, 2,100 households and 9,086 people were included (99% response rate). Across the three communes respectively, coverage by recall was 80.7% (95% CI76.8-84.1), 82.6% (78.1-86.4), and 82.3% (79.0-85.2) for two doses and 94.2% (90.8-96.4), 91.8% (87-94.9), and 93.8% (90.8-95.9) for at least one dose. Coverage varied by less than 9% across age groups and was similar among males and females. Participants obtained vaccines from door-to-door vaccinators (53%) and fixed sites (47%). Most participants heard about the campaign through community 'criers' (58%). Despite hard-to-reach communities, high coverage was achieved in all areas through combining different vaccine delivery strategies and extensive community mobilisation. Emergency OCV campaigns are a viable option for outbreak control and where possible multiple strategies should be used in combination. Euvichol will help alleviate the OCV shortage but effectiveness studies in outbreaks should be done.Perturbation of synapse development underlies many inherited neurodevelopmental disorders including intellectual disability (ID). Diverse mutations on the human TBC1D24 gene are strongly associated with epilepsy and ID. However, the physiological function of TBC1D24 in the brain is not well understood, and there is a lack of genetic mouse model that mimics TBC1D24 loss-of-function for the study of animal behaviors. Here we report that TBC1D24 is present at the postsynaptic sites of excitatory synapses, where it is required for the maintenance of dendritic spines through inhibition of the small GTPase ARF6. Mice subjected to viral-mediated knockdown of TBC1D24 in the adult hippocampus display dendritic spine loss, deficits in contextual fear memory, as well as abnormal behaviors including hyperactivity and increased anxiety. Interestingly, we show that the protein stability of TBC1D24 is diminished by the disease-associated missense mutation that leads to F251L amino acid substitution. We further generate the F251L knock-in mice, and the homozygous mutants show increased neuronal excitability, spontaneous seizure and pre-mature death. Moreover, the heterozygous F251L knock-in mice survive into adulthood but display dendritic spine defects and impaired memory. Our findings therefore uncover a previously uncharacterized postsynaptic function of TBC1D24, and suggest that impaired dendritic spine maintenance contributes to the pathophysiology of individuals harboring TBC1D24 gene mutations. The F251L knock-in mice represent a useful animal model for investigation of the mechanistic link between TBC1D24 loss-of-function and neurodevelopmental disorders.For a genetically identical microbial population, multi-gene expression in various environments requires effective allocation of limited resources and precise control of heterogeneity among individual cells. However, it is unclear how resource allocation and cell-to-cell variation jointly shape the overall performance. Here we demonstrate a Simpson's paradox during overexpression of multiple genes two competing proteins in single cells correlated positively for every induction condition, but the overall correlation was negative. Yet this phenomenon was not observed between two competing mRNAs in single cells. Our analytical framework shows that the phenomenon arises from competition for translational resource, with the correlation modulated by both mRNA and ribosome variability. Thus, heterogeneity plays a key role in single-cell multi-gene expression and provides the population with an evolutionary advantage, as demonstrated in this study.

Autoři článku: Glennknox9644 (Kanstrup Weinstein)