Glennhougaard4620
For better utility in medical care, MBG fabricated in the laboratory should be characterized using various characterization methods such as SEM, TEM, BET, and XRD.The compound NaCu0.2Fe0.3Mn0.5O2 was synthesized using a solid-state method and it crystallized in a hexagonal system with a R3̄m space group in an O3-type phase. The optical properties were measured using UV-Vis absorption spectrometry to determine the absorption coefficient α and the optical band gap E g. The optical band gap energy of this sample is 2.45 eV, which indicates that it has semiconductor characteristics. Furthermore, the electrical and dielectric properties of the material were investigated using complex impedance spectroscopy between 10-1 Hz and 106 Hz at various temperatures (333-453 K). The permittivity results prove that there are two types of polarization, dipolar polarization and space charge polarization. The Nyquist diagrams show the contribution of the effects of the grain, grain boundary, and electrode properties. The frequency dependence of the conductivity was interpreted in terms of Jonscher's law. The DC conductivity follows both the Mott and Arrhenius laws at low and high temperature, respectively. The temperature dependence of the power law exponent(s) suggests that the overlapping large polaron tunneling (OLPT) model is the dominant transport process in this material. The optimum hopping length of the polaron (4 Å) is large compared with the interatomic spacing (2.384 Å for Na-O and 2.011 Å for Cu, Fe, Mn-O).Polymer-based thermal interface materials (TIMs) have attracted wide attention in the field of thermal management because of their outstanding properties including light weight, low cost, corrosion resistance and easy processing. However, the low thermal conductivity (∼0.2 W m-1 K-1) of the intrinsic polymer matrix largely degrades the overall thermal performance of polymer-based TIMs even those containing highly thermal conductive fillers. Hence, enhancing the intrinsic thermal conductivity of the polymer matrix is one of the most critical problems needed to be solved. This paper studies the thermal conductivity of poly(3,4-ethylenedioxythiophene) (PEDOT) films fabricated via cyclic voltammetry. By controlling the number of cycles in the electrochemical synthesis, different thickness of PEDOT films could be obtained. A time-domain thermoreflectance (TDTR) system was employed to evaluate the thermal performance of such as-prepared PEDOT films. We have demonstrated that a PEDOT film with thickness of 40 nm achieves the highest out-of-plane thermal conductivity of ∼0.60 W m-1 K-1, which is almost three folds the thermal conductivity of commercially available pristine PEDOTPSS film with similar thickness. The X-ray diffraction spectrum reveals that the PEDOT thin film with high crystallinity at the initial stage of electrochemical synthesis leads to enhanced thermal transportation. The findings in this work not only offer an opportunity to fabricate polymer materials exhibiting enhanced thermal conductivity, but also allow one to adjust the thermal performance of conducting polymers in practical applications.Hypochlorous acid (HClO) is a special kind of reactive oxygen species, which plays an important role in resisting pathogen invasion and maintaining cell redox balance and other physiological processes. In addition, HClO is commonly used in daily life as a bleaching and disinfectant agent. Its excessive use can also lead to death of water animals and serious respiratory and skin diseases in humans. Therefore, it is of great significance to develop a quick and convenient tool for detecting HClO in the environment and organisms. In this paper, we utilize the specific reaction of HClO with dimethylthiocarbamate to develop a novel naphthalene derivative fluorescent probe (BNA-HClO), it was designed and synthesized by using 6-(2-benzothiazolyl)-2-naphthol as the fluorophore and N,N-dimethylthiocarbamate as the recognition group. BNA-HClO shows large fluorescence enhancement (374-fold), high sensitivity (a detection limit of 37.56 nM), rapid response ( less then 30 s), strong anti-interference ability and good specificity in vitro. Based on the outstanding in vitro sensing capability of BNA-HClO, it has been successfully used to detect spiked HClO in tap water, medical wastewater and fetal bovine serum with good recovery. BNA-HClO has also been successfully used as a portable test strip for the in situ semi-quantitative detection of HClO in tap water solutions. In addition, BNA-HClO can successfully enable the detection and imaging of exogenous and endogenous HClO in living cells. This work provides a simple and effective tool for the detection and imaging of HClO in environmental and biological systems, and provides some theoretical guidance for future exploration of biological and pathological studies related to HClO.Reasonable regulation and synthesis of hollow nanostructure materials can provide a promising electrode material for lithium-ion batteries (LIBs). In this work, utilizing a metal-organic framework (MOF, ZIF-67) as the raw material and template, a composite of Co x S y with a carbon shell is successfully formed through a hydrothermal vulcanization and a subsequent high temperature sintering process. The as-obtained Co x S y (700) material sintered at 700 °C has a large specific surface area, and at the same time possesses a hollow carbon shell structure. Benefiting from unique structural advantages, the volume change during the electrochemical reaction can be well alleviated, and thus the structural stability is greatly improved. The presence of the carbon matrix can also offer sufficient ion/electron transfer channels, contributing to the enhanced electrochemical performance. As a result, the Co x S y (700) electrode can deliver an excellent capacity of 875.6 mA h g-1 at a current density of 100 mA g-1. Additionally, a high-capacity retention of 88% is achieved after 1000 cycles when the current density is increased to 500 mA g-1, and exhibiting a prominent rate capability of 526.5 mA h g-1, simultaneously. The novel synthesis route and considerable electrochemical properties presented by this study can afford guidance for the exploration of high-performance cobalt sulfide anodes in LIBs.To examine the reactivity of noble-metal-free Ni3C towards hydrogen evolution reaction (HER), we report a comprehensive first-principles density functional theory (DFT) study on the stability, geometric structure, electronic characteristics, and catalytic activity for HER on the Ni3C crystal (113) surfaces with different surface terminations, namely the C-rich and Ni-rich terminated surface of Ni3C (113). The results indicate that C-rich and some stoichiometric surfaces are thermodynamically stable. The bridge-site of C-rich Ni3C (113) is indispensable for HER because it not only displays improved electrocatalytic activity, but also possesses appropriate hydrogen adsorption energy, overpotential and robust stability. The ΔG H (0.02 eV) and overpotential obtained by C-rich Ni3C outperformed that obtained by Pt determined by computation (ΔG H = -0.07 eV). Thus, the bridge-sites of C-rich Ni3C (113) function as both excellent and stable active sites and adsorption/desorption sites. Increasing the density of active sites through doping or enlarging the surface area renders a prospective strategy to ameliorate the HER activity further. Overall, this study elucidates new insights into the surface properties of Ni3C for HER from water splitting and opens up a fascinating avenue to optimize the performance of solar energy conversion devices by synthesizing preferentially exposed catalyst facets.Polyaluminum chloride (PAC) is an inorganic polymer material that has the advantages of a simple preparation process and special electronic structure. It is considered to be the most efficient and widely used flocculation material for water treatment. In this work, PAC has been used as a Lewis acid catalyst in interdisciplinary fields because of its polynuclear Al-O cation structure. Further, its catalytic mechanism in green organic synthesis has been studied in detail by using the multicomponent Biginelli reaction as the probe. The effect of solvent on the self-assembly and aggregation process of PAC materials was investigated using optical microscopy, UV-Vis spectrophotometry, particle size analysis, XPS, IR, SEM and HR-TEM. The results show that the PAC materials have different morphological characteristics in different solvents. The Al-O-Al cations were transformed in the ethanol solvent to form new multi-nuclear cation aggregates Alb, which could be used as inorganic micro-nano reactors with unique synergistic catalysis in catalytic reactions. This is the first time the role of PAC in the Biginelli reaction has been analyzed with a liquid in situ infrared instrument, which provided favorable evidence for the speculated reaction mechanism. The PAC-ethanol system is, therefore, considered to be a green, efficient (best yield >99%), economic and recyclable catalyst for catalyzing organic synthesis reactions. The development and utilization of PAC materials in organic synthesis will bring new vitality to this cheap material, which is widely used in industries.Eu(iii) complexes emit red light with a high color purity and have consequently attracted attention for development toward display and physical sensing applications. The characteristic pure color emission originates from the intra-4f-4f transition, and the brightness strongly depends on the electronic and steric structures of organic ligands. A large π-conjugated ligand design with a large absorption coefficient has been actively studied for achieving bright emission. The π-conjugated Eu(iii) luminophores also provide oxygen and temperature sensing properties by controlling their excited state dynamics based on π-electron systems. A comprehensive understanding of the design strategy of large π-conjugated ligands is crucial for the further development of luminescent Eu(iii) complexes. In this review, we summarize the research progress on π-conjugated Eu(iii) luminophores exhibiting bright emission and their physical sensing applications.Drug-resistant superbugs (DRS) were isolated from hospital sewage waste and confirmed by a 16S rDNA molecular technique as B. BAPTA-AM filamentosus, B. flexus, P. stutzeri, and A. baumannii. Green nanotechnologies provide a new promising alternative pathway that was found to be much safer, eco-friendly, and has economic benefits over physical/chemical methods. Sargassum muticum (SM) mediated zinc oxide nanoparticles (ZnO-NPs) were proved to be photocatalytic and anti-microbial agents. Anti-microbial action was demonstrated by a maximal growth inhibition activity of 18 mm against A. baumannii and a minimal of 12 mm against B. flexus at 80 μg mL-1 concentrations. The anti-microbial mechanism of SMZnO-NPs employed a biphasic phenomenon persuaded by an osmotic shock that can attack the DRS bacterial cells directly and lead to death. In addition, photocatalytic activity was investigated by SMZnO-NPs for the degradation of methylene blue (MB) dye under different light conditions. Natural sunlight irradiation shows effective enhancement with the highest efficiencies of 96% being achieved within 60 min compared to UV-light and visible-light.