Gayayala1079
Within an optimum concentration, they serve as key nutrients providers, aid key enzymes and co-enzymes synthesis, and thus stimulate anaerobic microorganism activities. As for the nano-additives without trace-element base, their positive influences are relied on providing active sites for the microorganism, as well as absorbing inhibitory factors. Moreover, comparisons of these nano-additives' impacts on the two gas-production phases were conducted, while methane-production phases are found to be more sensitive to additions of these nanoparticles then hydrogen-production phase. Research perspectives and research gaps in this area are discussed.In this study, a novel Up-flow Blanket Filter (UBF) reactor was applied to the degradation of antibiotic wastewater. The experiments showed that when the hydraulic retention time (HRT) was 24 h and the ratio of volatile fatty acids (VFA) to alkalinity (ALK) was 0.3, the best removal efficiency was achieved in the combined packing UBF reactor, and the COD removal efficiency reached 80.1%-84.6%, exhibiting a significant difference in reaction performance from the other two reactors (P less then 0.05) and a good efficiency of cefotaxime sodium removal. Moreover, the microstructure and surface characteristics of the reactor fillers were studied through scanning electron microscope (SEM) analysis, which showed that three fillers all had biofilm adhesion, but the combined packing gave best performance. Energy dispersive spectrometer (EDS) tests indicated abundant element components in the combined packing. The particle size distribution of sludge was also considered in the experiment, and the result showed the particle size of sludge increased with the operation of the reactor. In addition, microbial community structures of sludge and biofilm with the combined packing were analyzed. High-throughput sequencing confirmed the existence of Pseudomonas, which had good adaptability to antibiotic wastewater and became the dominant bacteria. Decomposition process of cefotaxime sodium after hydrolysis and anaerobic treatment was analyzed through Fourier transform infrared spectroscopy (FTIR). The reactor, which is economical, exhibited favorable performance in degrading the pollutions in the antibiotic wastewater.Artemisinin extracted from Artemisia annua L. plants has a range of properties that qualifies it to treat several diseases, such as malaria and cancer. However, it has short half-life, which requires making continuous use of it, which has motivated the association of artemisinin (ART) with polymeric nanoparticles to increase its therapeutic efficiency. However, the ecotoxicological safety of this association has been questioned, given the scarcity of studies in this area. Thus, in this work the toxicity of Poly (ε-Caprolactone) nanocapsules added with ART (ART-NANO) in zebrafish (Danio rerio), embryos and adults was studied. Different endpoints were analyzed in organisms exposed to ART-NANO, including those predictive of embryotoxicity and histopatoxicity. Embryotoxicity was analyzed based on Organization for Economic Co-operation and Development (OECD) test guideline (236) for fish embryo acute toxicity applied to zebrafish (Danio rerio) at 96 hpf under five nominal logarithmic concentrations (0.125 to 2.0 mg/ L). Our results demonstrate, mainly, that fertilized eggs presented increased coagulation, lack of heart rate, vitelline sac displacement and lack of somite formation. On the other hand, adult individuals (exposed to the same concentrations and evaluated after 24 and 96 h of exposure) have shown increased pericarditis. Therefore, the treatment based on ART, poly (ε-caprolactone) nanocapsules and on their combination at different concentrations have shown toxic effects on zebrafish embryos and adult individuals.Due to increasingly severe microplastic pollution in freshwaters, the interaction between these contaminants and cyanobacteria warrants study. this website In this study, we expose the freshwater cyanobacterium Microcystis aeruginosa to different sizes (1 μm and 100 nm) of polystyrene (PS) microplastics of 5 mg/L. Results indicate 1 μm microplastics promote algal growth (12.42% ± 0.94%) at 96 h, and have greater potential to aggregate on algal cell surfaces and inhibit photosynthesis. But no significance was observed in 100 nm microplastics treatment on algal growth and photosynthetic activity after 96 h exposure. Especially, 1 μm microplastics increased the content of intracellular microcystins (MCs) (18.42% ±0.33%) after 72 h and inhibit MCs release (23.87% ±8.79%) at 72 h, while 100 nm PS microplastics promote MCs production only at 48 h (14.83% ± 7.07%). Results indicate that smaller size does not necessarily mean greater toxicity, 1 μm microplastics showing more adverse effects than 100 nm microplastics to M. aeruginosa, improving understanding of the toxicity of microplastics in freshwater ecosystems, and challenging the conventionally held belief that smaller microplastics are more toxic.In situ chemical oxidations (ISCO) have been demonstrated as effective ways for remediating soils contaminated with organic pollutants by complete mineralization. This work aims to develop a technology for the oxidation remediation of soils contaminated with Polycyclic Aromatic Hydrocarbons (PAHs) using a dual calcium peroxide (CP)/persulfate (PS) oxidant system activated by oxalic acid (OA)-chelating Fe2+. The dual peroxide system was set up, and the effects of 5 single factors (i.e., CP dosage, PS dosage, Fe2+ dosage, OA concentration, and soil/water ratio) on PAHs degradation were studied using the single-factor experiment. The response surface method was then introduced to obtain the optimized experimental conditions (CP dosage, PS dosage, OA concentration) of the dual peroxide system. The result shows that the dual peroxide system significantly increased the PAHs degradation and the maximum PAHs degradation efficiency (70.8%) was achieved by the dual peroxide system under optimal conditions (PS dosage, CP concentration, Fe2+/PS ratio, and Fe2+/OA ratio was 8.89 g/kg, 0.18 mol/L, 1/4 and 0.62) at neutral soil condition. This study is an illustration of the promising efficiency of the dual peroxide system for PAH oxidation in the neutral soil and has great potential for remediation of PAHs contaminated farmland soils.