Gatesdodd0719

Z Iurium Wiki

These findings indicate that ADSCs reduce lesion size and promote functional recovery after SCI mainly through activation of a TGF-β1/P-Samd3/PLOD2 pathway in spinal cord neurons.Activated Cdc42-associated kinase 1 (ACK1) is an oncogene in multiple cancers, but the underlying mechanisms of its oncogenic role remain unclear in non-small cell lung cancer (NSCLC). Herein, we comprehensively investigated the ACK1-regulated cell processes and downstream signaling pathways, as well as its prognostic value in NSCLC. We found that ACK1 gene amplification was associated with mRNA levels in The Cancer Genome Atlas (TCGA) lung cancer cohort. The Oncomine databases showed significantly elevated ACK1 levels in lung cancer. In vitro, an ACK1 inhibitor (dasatinib) increased the sensitivity of NSCLC cell lines to AKT or MEK inhibitors. RNA-sequencing results demonstrated that an ACK1 deficiency in A549 cells affected the MAPK, PI3K/AKT, and Wnt pathways. These results were validated by gene set enrichment analysis (GSEA) of data from 188 lung cancer cell lines. Using Cytoscape, we dissected 14 critical ACK1-regulated genes. The signature with the 14 genes and ACK1 could significantly dichotomize the TCGA lung cohort regarding overall survival. The prognostic accuracy of this signature was confirmed in five independent lung cancer cohorts and was further validated by a prognostic nomogram. Our study unveiled several downstream signaling pathways for ACK1, and the proposed signature may be a promising prognostic predictor for NSCLC.This study compares the longitudinal histological characteristics of proximal humeral implants with different spatial structures in rabbits. Thirty skeletally-mature male rabbits were divided into a trabecular structure group and regular hexahedron structure group according to the different spatial structures of a biological titanium alloy screw inserted into the greater tuberosity of the proximal humerus. Samples were collected 3, 6, and 12 weeks after the implantation surgery. Histological results showed that the amount of bone in-growth in the porous cavity of the screw implant increased over time. Quantitative analysis showed there was significantly more bone in-growth in the trabecular structure group than the classic structure group 3 weeks (25.4% ± 6.9% vs 19.6% ± 3.7%, P 0.05). Our data found that bone in-growth significantly differed among the three time points (P less then 0.05) in both groups, but not between the implants with different spatial structures 12 weeks after the surgery.Emerging evidence shows that type II protein arginine methyltransferase 5 (PRMT5) serves as an oncoprotein and plays a critical role in many types of human cancer. However, the precise role and function of PRMT5 in human colorectal cancer (CRC) growth and epithelial-mesenchymal transition (EMT) are still unclear, and the related molecular mechanism and signaling axis remains largely obscure. Here, we show that PRMT5 is highly expressed in CRC cell lines and tissues. Using PRMT5 stable depletion cell lines and specific inhibitor, we discover that down-regulation of PRMT5 by shRNA or inhibition of PRMT5 activity by specific inhibitor GSK591 markedly suppresses CRC cell proliferation and cell cycle progression, which is closely associated with PRMT5 enzyme activity. Moreover, PRMT5 regulates CRC cell growth and cycle progression via activation of Akt, but not through ERK1/2, PTEN, and mTOR signaling pathway. Further study shows that PRMT5 controls EMT of CRC cells by activation of EGFR/Akt/GSK3β signaling cascades. Collectively, our results reveal that PRMT5 promotes CRC cell proliferation, cell cycle progression, and EMT via regulation of EGFR/Akt/GSK3β signaling cascades. Most importantly, our findings also suggest that PRMT5 may be a potential therapeutic target for the treatment of human colorectal cancer.Epithelial splicing regulatory protein 1 (ESRP1) is an RNA-binding protein that regulates alternative splicing of mRNA. ESRP1 plays an important role in chemoresistance of various cancers, including breast cancer, colon cancer and non-small cell lung cancer. learn more However, the role of ESRP1 and its mechanism in small cell lung cancer (SCLC) chemoresistance remains unclear. In this study, we found that ESRP1 is significantly downregulated in SCLC chemo-resistant cells compared with chemo-sensitive cells. Moreover, the expression of ESRP1 was significantly lower in SCLC tissues than that in normal adjacent tissues and positively correlated with overall survival. Overexpression of ESRP1 increased SCLC chemosensitivity, and induced cell apoptosis and cell cycle arrest, whereas knockdown of ESRP1 induced the opposite effects. ESRP1 could inhibit the growth of SCLC in vivo. Through mRNA transcriptome sequencing, we found that ESRP1 regulates coactivator-associated arginine methyltransferase 1 (CARM1) to produce two different transcripts CARM1FL and CARM1ΔE15 by alternative splicing. ESRP1 affects the chemoresistance of SCLC by changing the content of different transcripts of CARM1. Furthermore, CARM1 regulates arginine methylation of Smad7, activates the TGF-β/Smad pathway and induces epithelial-to-mesenchymal transition (EMT), thereby promoting SCLC chemoresistance. Collectively, our study firstly demonstrates that ESRP1 inhibits the TGF-β/Smad signaling pathway by regulating alternative splicing of CARM1, thereby reversing chemoresistance of SCLC. The splicing factor ESRP1 may serve as a new drug resistance marker molecule and a potential therapeutic target in SCLC patients.Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors worldwide, and its prognosis is still not optimistic. Oxaliplatin is a type of platinum chemotherapeutic agent, but its treatment effects on OSCC and molecular mechanisms have not been fully elucidated. Parthanatos, a unique form of cell death, plays an important role in a variety of physiological and pathological processes. This study aims to investigate whether oxaliplatin inhibits OSCC by inducing parthanatos. Our results showed that oxaliplatin inhibited the proliferation and migration of OSCC cells in vitro, and also inhibited the tumorigenesis in vivo. Further experiments proved that oxaliplatin induced parthanatos in OSCC cells, characterized by depolarization of the mitochondrial membrane potential, up-regulation of PARP1, AIF and MIF in the nucleus, as well as the nuclear translocation of AIF. Meanwhile, PARP1 inhibitor rucaparib and siRNA against PARP1 attenuated oxaliplatin-induced parthanatos in OSCC cells. In addition, we found that oxaliplatin caused oxidative stress in OSCC cells, and antioxidant NAC not only relieved oxaliplatin-induced overproduction of reactive oxygen species (ROS) but also reversed parthanatos caused by oxaliplatin.

Autoři článku: Gatesdodd0719 (Rosario Mattingly)