Garnerpace9229
The EPR spectroscopic results provide an atomic picture of surface-modified Mn3O4 nanoparticles for the first time. These results can enhance our understanding of the rational design of catalysts, for example, for the water oxidation reaction.The precise manipulation of nanocluster structures remains highly desirable for disclosing the structure-property correlations at the atomic level. However, the control over a nanocluster (metal kernel + surface ligand) with a maintained template has long been a challenging pursuit, and little has been achieved for manipulation at the atomic level. Here, on the basis of the M29(SR)18(PR'3)4 cluster system, the control over the vertex phosphine ligands is accomplished. selleck inhibitor Therefore, a combination of the manipulation of vertex phosphines in this work and of internal metals and surface thiols reported previously realizes control over the M29(SR)18(PR'3)4 cluster template. The principles for regulating the photoluminescence (PL) of M29 clusters via dictation of their metal compositions, surface thiols, and vertex phosphines are exploited to rationally design the most emissive nanocluster among the M29 cluster family. Overall, this work fills the missing part necessary for the manipulation of M29(SR)18(PR'3)4 nanoclusters, providing an ideal nanomodel that enables us to grasp the structure-property correlations at the atomic level.Stabilization of protein-protein interactions (PPIs) holds great potential for therapeutic agents, as illustrated by the successful drugs rapamycin and lenalidomide. However, how such interface-binding molecules can be created in a rational, bottom-up manner is a largely unanswered question. We report here how a fragment-based approach can be used to identify chemical starting points for the development of small-molecule stabilizers that differentiate between two different PPI interfaces of the adapter protein 14-3-3. The fragments discriminately bind to the interface of 14-3-3 with the recognition motif of either the tumor suppressor protein p53 or the oncogenic transcription factor TAZ. This X-ray crystallography driven study shows that the rim of the interface of individual 14-3-3 complexes can be targeted in a differential manner with fragments that represent promising starting points for the development of specific 14-3-3 PPI stabilizers.Signal peptides play an important role in guiding and transferring transmembrane proteins and secreted proteins. In recent years, with the explosive growth of protein sequences, computationally predicting signal peptides and their cleavage sites from protein sequences is highly desired. In this work, we present an improved approach, Signal-3L 3.0, for signal peptide recognition and cleavage-site prediction using a 3-layer hybrid method of integrating deep learning algorithms and window-based scoring. There are three main components in the Signal-3L 3.0 prediction engine (1) a deep bidirectional long short-term memory (Bi-LSTM) network with a soft self-attention learns abstract features from sequences to determine whether a query protein contains a signal peptide; (2) the statistics propensity window-based cleavage site screening method is applied to generate the set of candidate cleavage sites; (3) the prediction of a conditional random field with a hybrid convolutional neural network (CNN) and Bi-LSTM is fused with the window-based score for identifying the final unique cleavage site. link2 Experimental results on the benchmark datasets show that the new deep learning-driven Signal-3L 3.0 yields promising performance. The online server of Signal-3L 3.0 is available at http//www.csbio.sjtu.edu.cn/bioinf/Signal-3L/.Glutamic acid (Glu) is the most abundant excitatory neurotransmitter in the central nervous system, and an elevated level of Glu may indicate some neuropathological diseases. Herein, three isomorphic microporous lanthanide metal-organic frameworks (MOFs) [(CH3)2NH2]2[Ln6(μ3-OH)8(BDC-OH)6(H2O)6]·(solv)x (ZJU-168; ZJU = Zhejiang University, H2BDC-OH = 2-hydroxyterephthalic acid, Ln = Eu, Tb, Gd) were designed for the detection of Glu. ZJU-168(Eu) and ZJU-168(Tb) suspensions simultaneously produce the characteristic emission bands of both lanthanide ions and ligands. When ZJU-168(Eu) and ZJU-168(Tb) suspensions exposed to Glu, the fluorescence intensity of ligands increases while the emission of lanthanide ions is almost unchanged. By utilizing the emission of ligands as the detected signal and the emission of lanthanide ions as the internal reference, an internal calibrated fluorescence sensor for Glu was obtained. There is a good linear relationship between fluorescence intensity ratio and Glu concentration in a wide range with the detection limit of 3.6 μM for ZJU-168(Tb) and 4.3 μM for ZJU-168(Eu). Major compounds present in blood plasma have no interference for the detection of Glu. Furthermore, a convenient analytical device based on a one-to-two logic gate was constructed for monitoring Glu. These establish ZJU-168(Tb) as a potential turn-on, ratiometric, and colorimetric fluorescent sensor for practical detection of Glu.This paper describes the synthesis, solution-phase biophysical studies, and X-ray crystallographic structures of hexamers formed by macrocyclic β-hairpin peptides derived from the central and C-terminal regions of Aβ, which bear "tails" derived from the N-terminus of Aβ. Soluble oligomers of the β-amyloid peptide, Aβ, are thought to be the synaptotoxic species responsible for neurodegeneration in Alzheimer's disease. Over the last 20 years, evidence has accumulated that implicates the N-terminus of Aβ as a region that may initiate the formation of damaging oligomeric species. We previously studied, in our laboratory, macrocyclic β-hairpin peptides derived from Aβ16-22 and Aβ30-36, capable of forming hexamers that can be observed by X-ray crystallography and SDS-PAGE. To better mimic oligomers of full length Aβ, we use an orthogonal protecting group strategy during the synthesis to append residues from Aβ1-14 to the parent macrocyclic β-hairpin peptide 1, which comprises Aβ16-22 and Aβ30-36. The N-terminally extended peptides N+1, N+2, N+4, N+6, N+8, N+10, N+12, and N+14 assemble to form dimers, trimers, and hexamers in solution-phase studies. X-ray crystallography reveals that peptide N+1 assembles to form a hexamer that is composed of dimers and trimers. These observations are consistent with a model in which the assembly of Aβ oligomers is driven by hydrogen bonding and hydrophobic packing of the residues from the central and C-terminal regions, with the N-terminus of Aβ accommodated by the oligomers as an unstructured tail.A thorough understanding of the kinetics and dynamics of combusting mixtures is of considerable interest, especially in regimes beyond the reach of current experimental validation. The ReaxFF reactive force field method has provided a way to simulate large-scale systems of hydrogen combustion via a parametrized potential that can simulate bond breaking. This modeling approach has been applied to hydrogen combustion, as well as myriad other reactive chemical systems. In this work, we benchmark the performance of several common parametrizations of this potential against higher-level quantum mechanical (QM) approaches. We demonstrate instances where these parametrizations of the ReaxFF potential fail both quantitatively and qualitatively to describe reactive events relevant for hydrogen combustion systems.Determining the binding affinity is an important aspect of characterizing protein-ligand complexes. Here, we describe an approach based on covalent labeling (CL)-mass spectrometry (MS) that can accurately provide protein-ligand dissociation constants (Kd values) using diethylpyrocarbonate (DEPC) as the labeling reagent. Even though DEPC labeling reactions occur on a time scale that is similar to the dissociation/reassociation rates of many protein-ligand complexes, we demonstrate that relatively accurate binding constants can still be obtained as long as the extent of protein labeling is kept below 30%. Using two well-established model systems and one insufficiently characterized system, we find that Kd values can be determined that are close to values obtained in previous measurements. The CL-MS-based strategy that is described here should serve as an alternative for characterizing protein-ligand complexes that are challenging to measure by other methods. Moreover, this method has the potential to provide, simultaneously, the affinity and binding site information.Recent electronic state-selected measurements of the reactions of atomic vanadium cations with D2 and CO2 are reanalyzed to properly account for the kinetic energy distribution of the reactant neutrals. The need for this is demonstrated in the present work by comparing the D2 data to that obtained previously in earlier experiments but unpublished. It is shown that the earlier data, which utilized a surface ionization source of V+, and the state-selected data for V+(a5D2) are essentially identical in the threshold regions where they overlap. Differences in the electronic state energies and kinetic energy distributions of V+ in the two experiments are very small and much smaller than the kinetic energy distribution of the neutral reactant, which is identical in both experiments. It is shown that properly accounting for the latter distribution alters the conclusions regarding the threshold energy for the endothermic formation of VD+ such that recent conclusions regarding the bond energy of VD+ are substantially altered and found to reproduce the original bond energy determination. Accounting for all experiments, a revised best value for D0(VH+) is 2.07 ± 0.09 eV [or D0(VD+) = 2.10 ± 0.09 eV]. link3 This conclusion is validated by high-level ab initio calculations. Differences in the new and older data sets for the V+ + D2 reaction at higher energies (above the onset for dissociation of the product ion) are also discussed. The same methodology is then applied to recent studies on the state-selected V+ + CO2 reaction.Natural compounds are an important class of potent drug molecules including some retrospectively found to act as stabilizers of protein-protein interactions (PPIs). However, the design of synthetic PPI stabilizers remains an understudied approach. To date, there are limited examples where cooperativity has been utilized to guide the optimization of a PPI stabilizer. The 14-3-3 scaffold proteins provide an excellent platform to explore PPI stabilization because these proteins mediate several hundred PPIs, and a class of natural compounds, the fusicoccanes, are known to stabilize a subset of 14-3-3 protein interactions. 14-3-3 has been reported to negatively regulate the p65 subunit of the NF-κB transcription factor, which qualifies this protein complex as a potential target for drug discovery to control cell proliferation. Here, we report the high-resolution crystal structures of two 14-3-3 binding motifs of p65 in complex with 14-3-3. A semisynthetic natural product derivative, DP-005, binds to an interface pocket of the p65/14-3-3 complex and concomitantly stabilizes it. Cooperativity analyses of this interaction, and other disease relevant 14-3-3-PPIs, demonstrated selectivity of DP-005 for the p65/14-3-3 complex. The adaptation of a cooperative binding model provided a general approach to characterize stabilization and to assay for selectivity of PPI stabilizers.