Garnerfrost1869
Dynamic covalent component self-sorting processes have been investigated for constituents of different cyclic orders, macrocycles and macrobicyclic cages based on multiple reversible imine formation. The progressive assembly of the final structures from dialdehyde and polyamine components involved the generation of kinetic products and mixtures of intermediates which underwent component selection and self-correction to generate the final thermodynamic constituents. Importantly, constitutional dynamic networks (CDNs) of macrocycles and macrobicyclic cages were set up either from separately prepared constituents or by in situ assembly from their components. Over time, these CDNs underwent conversion from a kinetically trapped out-of-equilibrium distribution of constituents to the thermodynamically self-sorted one through component exchange in different dimensional orders.Photodynamic therapy (PDT) is an effective noninvasive therapeutic method that employs photosensitizers (PSs) converting oxygen to highly cytotoxic singlet oxygen (1O2) under light irradiation. The conventional PDT efficacy is, however, compromised by the nonspecific delivery of PSs to tumor tissue, the hypoxic tumor microenvironment, and the reduction of generated 1O2 by the intracellular antioxidant glutathione (GSH). Herein, an intelligent multifunctional synergistic nanoplatform (CMGCC) for T1-weighted magnetic resonance (MR) imaging-guided enhanced PDT is presented, which consists of nanoparticles composed of catalase (CAT) and manganese dioxide (MnO2) that are integrated within chlorin-e6-modified glycol chitosan (GC) polymeric micelles. In this system, (1) GC polymers with pH-sensitive surface charge switchability from neutral to positive could improve the PS accumulation within the tumor region, (2) CAT could effectively reoxygenate the hypoxic tumor via catalyzing endogenous hydrogen peroxide to O2, and (3) MnO2 could consume the intracellular GSH while simultaneously producing Mn2+ as a contrast agent for T1-weighted MR imaging. The CMGCC particles possess uniform size distribution, well-defined structure, favorable enzyme activity, and superior 1O2 generation ability. Both in vitro and in vivo experiments demonstrate that the CMGCC exhibit significantly enhanced PDT efficacy toward HeLa cells and subcutaneous HeLa tumors. Our study thereby demonstrates this to be a promising synergistic theranostic nanoplatform with highly efficient PDT performance for cancer therapy.Indium selenide (InSe) has become a research hotspot because of its favorable carrier mobility and thickness-tunable band gap, showing great application potential in high-performance optoelectronic devices. The trend of miniaturization in optoelectronics has forced the feature sizes of the electronic components to shrink accordingly. Therefore, atomically thin InSe crystals may play an important role in future optoelectronics. Given the instability and ultralow photoluminescent (PL) emission of mechanically exfoliated ultrathin InSe, synthesis of highly stable mono- and few-layer InSe nanosheets with high PL efficiency has become crucial. Herein, ultrathin InSe nanosheets were prepared via thermal annealing of electrochemically intercalated products from bulk InSe. The size and yield of the as-prepared nanosheets were up to ∼160 μm and ∼70%, respectively, and ∼80% of the nanosheets were less than five layer. Impressively, the as-prepared nanosheets showed greatly enhanced stability and PL emission because of surface modification by carbon species. Efficient photoresponsivity of 2 A/W was achieved in the as-prepared nanosheet-based devices. These nanosheets were further assembled into large-area thin films with photoresponsivity of 16 A/W and an average Hall mobility of about 5 cm2 V-1 s-1. Finally, one-dimensional (1D) InSe nanoscrolls with a length up to 90 μm were constructed by solvent-assisted self-assembly of the exfoliated nanosheets.Two-dimensional (2D) materials and van der Waals heterostructures with atomic-scale thickness provide enormous potential for advanced science and technology. However, insufficient knowledge of compatible synthesis impedes wafer-scale production. PdSe2 and Pd2Se3 are two of the noble transition-metal chalcogenides with excellent physical properties that have recently emerged as promising materials for electronics, optoelectronics, catalyst, and sensors. This research presents a feasible approach to synthesize PdSe2 and Pd2Se3 with inherently asymmetric structure on honeycomb lattice 2D monolayer substrates of graphene and MoS2. We directly deposit a molecular transition-metal precursor complex on the surface of the 2D substrates, followed by low-temperature selenization by chemical vapor flow. Parameter control leads to tuning of the material from monolayer nanocrystals with Pd2Se3 phase, to continuous few-layer PdSe2 films. Annular dark-field scanning transmission electron microscopy (ADF-STEM) reveals the structure, phase variations, and heteroepitaxy at the atomic level. PdSe2 with unconventional interlayer stacking shifts appeared as the kinetic product, whereas the bilayer PdSe2 and monolayer Pd2Se3 are the thermodynamic product. The epitaxial alignment of interlayer rotation and translation between the PdSe2 and underlying 2D substrate was also revealed by ADF-STEM. These results offer both nanoscale and atomic-level insights into direct growth of van der Waals heterostructures, as well as an innovative method for 2D synthesis by predetermined nucleation.As the most common malignancy in humans, oral squamous cell carcinoma (OSCC) not only harms the people's health but also undermines their confidence after facial surgery. Early detection and treatment can effectively reduce these damages. GCN2iB inhibitor The unique collateral trans-cleavage nuclease activity of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system was utilized to realize the detection of nucleic acid with high sensitivity. So, in this work, we designed a point-of-care testing (POCT) platform for the detection of OSCC-associated salivary hsa-miRNA 31-5p (miR-31) via the cascade signal amplification of "invading stacking primer" (IS-primer) amplification reaction (ISAR), CRISPR/Cas12a, and dual-mode paper-based strip (dm-Strip). To amplify the detection signal of trace miR-31, the cascade signal amplification of CRISPR/Cas12a system coupling with ISAR was designed in a one-pot reaction at a constant temperature. The target miR-31 could activate the ISAR to generate numerous DNAs, which would further trigger the trans-cleavage effect of Cas12a to catalyze the nonspecific single-stranded DNA (ssDNA) cleavage.