Gardnertran5189
Range of motion has been widely known to decrease with age; however, factors associated with its decrease in the elderly population and especially its gender difference have been unclear. Therefore, this study aimed to investigate the factors associated with ankle dorsiflexion range of motion in the older population. Both male (n = 17, mean ± SD; 70.5 ± 4.2 years; 165.4 ± 5.3 cm; 63.8 ± 7.7 kg) and female (n = 25, 74.0 ± 4.0 years; 151.2 ± 4.9 cm; 50.1 ± 5.6 kg) community-dwelling older adults participated in this study. The ankle dorsiflexion and passive torque of both legs were measured using a dynamometer, and shear elastic modulus of the medial gastrocnemius muscle at 0° ankle angle was measured using ultrasonic shear wave elastography. In this study, we defined the passive torque at dorsiflexion range of motion (DF ROM) as the index of stretch tolerance, and shear elastic modulus as the index of passive muscle stiffness. The partial correlation coefficient adjusted by age, height, weight, and side (dominant or nondominant side) was used to analyze the relationship between DF ROM and passive torque at DF ROM or shear elastic modulus of MG in each male and female participant, respectively. Our results revealed that dorsiflexion range of motion was significantly associated with passive torque at dorsiflexion range of motion in both male (r = 0.455, p = 0.012) and female (r = 0.486, p less then 0.01), but not with shear elastic modulus in both male (r = -0.123, p = 0.519) and female (r = 0.019, p = 0.898). Our results suggested that the ankle dorsiflexion range of motion could be related to the stretch tolerance, but not to passive muscle stiffness in community-dwelling elderly population regardless of gender.Skeletal muscle plays a pivotal role in whole-body glucose metabolism, accounting for the highest percentage of glucose uptake and utilization in healthy subjects. Impairment of these key functions occurs in several conditions including sedentary lifestyle and aging, driving toward hyperglycemia and metabolic chronic diseases. Therefore, strategies pointed to improve metabolic health by targeting skeletal muscle biochemical pathways are extremely attractive. Among them, we focused on the natural sesquiterpene and cannabinoid type 2 (CB2) receptor agonist Trans-β-caryophyllene (BCP) by analyzing its role in enhancing glucose metabolism in skeletal muscle cells. Experiments were performed on C2C12 myotubes. SRT1720 cell line CB2 receptor membrane localization in myotubes was assessed by immunofluorescence. Within glucose metabolism, we evaluated glucose uptake (by the fluorescent glucose analog 2-NBDG), key enzymes of both glycolytic and oxidative pathways (by spectrophotometric assays and metabolic radiolabeling) and ATP production (by chemiluminescence-based assays). In all experiments, CB2 receptor involvement was tested with the CB2 antagonists AM630 and SR144528. Our results show that in myotubes, BCP significantly enhances glucose uptake, glycolytic and oxidative pathways, and ATP synthesis through a CB2-dependent mechanism. Giving these outcomes, CB2 receptor stimulation by BCP could represent an appealing tool to improve skeletal muscle glucose metabolism, both in physiological and pathological conditions.Decreased greenhouse gas emissions (GHG) are urgently needed in view of global health threat represented by climate change. The goal of this paper is to test the validity of the Environmental Kuznets Curve (EKC) hypothesis, considering less common measures of environmental burden. For that, four different estimations are done, one considering total GHG emissions, and three more taking into account, individually, the three main GHG gases-carbon dioxide (CO2), nitrous oxide (N2O), and methane gas (CH4)-considering the oldest and most recent economies adhering to the EU27 (the EU 15 (Old Europe) and the EU 12 (New Europe)) separately. Using panel dynamic fixed effects (DFE), dynamic ordinary least squares (DOLS), and fully modified ordinary least squares (FMOLS) techniques, we validate the existence of a U-shaped relationship for all emission proxies considered, and groups of countries in the short-run. Some evidence of this effect also exists in the long-run. However, we were only able to validate the EKC hypothesis for the short-run in EU 12 under DOLS and the short and long-run using FMOLS. Confirmed is the fact that results are sensitive to models and measures adopted. Externalization of problems globally takes a longer period for national policies to correct, turning global measures harder and local environmental proxies more suitable to deeply explore the EKC hypothesis.The effectiveness of radar interferometric techniques in non-urban areas can often be compromised due to the lack of stable natural targets. This drawback can be partially compensated through the installation of reference targets, characterized by a bright and stable radar response. The installation of passive corner reflectors (PCR) often represents a valid aid, but these objects are usually cumbersome, and suffer from severe weather conditions; furthermore, the installation of a PCR can be difficult and costly, especially in places with hard accessibility. Active reflectors (AR) represent a less cumbersome alternative to PCRs, while still providing a stable phase response. This paper describes the design, implementation, and test of an AR prototype, designed to operate with the Sentinel-1 synthetic aperture radar (SAR), aimed at providing a fair performance/cost benefit. These characteristics, obtained through a tradeoff between the use of off-the-shelf components and a simple architecture, can make the setup of a dense network (i.e., tens of devices) in the monitored areas feasible. The paper reports the design, implementation, and the analysis of different tests carried out in a laboratory, and in a real condition in the field, to illustrate AR reliability and estimate its phase stability.Idiopathic pulmonary fibrosis (IPF) identifies a specific entity characterized by chronic, progressive fibrosing interstitial pneumonia of unknown cause, still lacking effective therapies. Growing evidence suggests that the biologic processes occurring in IPF recall those which orchestrate cancer onset and progression and these findings have already been exploited for therapeutic purposes. Notably, the incidence of lung cancer in patients already affected by IPF is significantly higher than expected. Recent advances in the knowledge of the cancer immune microenvironment have allowed a paradigm shift in cancer therapy. From this perspective, recent experimental reports suggest a rationale for immune checkpoint inhibition in IPF. Here, we recapitulate the most recent knowledge on lung cancer immune stroma and how it can be translated into the IPF context, with both diagnostic and therapeutic implications.