Gammelgaardjennings1631

Z Iurium Wiki

In this work, novel Prussian blue analogs-based layered double hydroxide (PBA@ZnTi-LDH) was in situ synthesized and used for radioactive Cs+ removal from wastewater. The results suggested that this PBA@ZnTi-LDH prepared using LDH as skeleton and transition metal source showed higher adsorption capacity (243.9 mg/g) and water stability than conventional PBAs, and promising application in scale-up Cs+ removal. Thus, it was granulated by calcium alginate and the PBA@ZnTi-LDH/CaALG exhibited favorable post-separation and fixed-bed adsorption ability at different Cs+ concentrations and flow rates, highlighting its application perspective on Cs+ removal from various kinds of wastewater. Moreover, the real-world Cs+ removal was preliminarily explored using natural complex Cs+-containing water. As a result, this stable and easily separated PBA@ZnTi-LDH/CaALG showed high removal efficiency, selectivity and good reusability, which was promising in scale-up Cs+ removal from the real-world wastewater.In this research to enhance the photocatalytic activity of Bi24O31Br10, precipitation fabrication of the Z-scheme heterojunction with Ag-Ag2O has been investigated. The characterizations were carried out by XRD, FESEM, TEM, EDX, BET-BJH, DRS and pHpzc analyzes. The Ag-Ag2O/Bi24O31Br10 Z-scheme heterojunction nanophotocatalyst with weighted ratio of 31 exhibited the wide absorption in the visible light region and displayed the high photocatalytic activity for the photodegradation of acid orange 7 (96.5%, 94.1% and 90% for 10, 20 and 60 mg/L, respectively after 120 min) and eosin yellow (for 10 mg/L 81.5%) compared to the other composites and pure Bi24O31Br10 and Ag-Ag2O samples. The highly enhanced photocatalytic activity of Ag-Ag2O/Bi24O31Br10 (31) was assigned to the surface plasmon resonance effect of silver nanoparticles, high solar-light-response and the structure of Z-scheme heterojunction, which effectively reduces the recombination of the photogenerated charge carriers. Moreover Ag-Ag2O/Bi24O31Br10(31) Z-scheme heterojunction nanophotocatalyst exhibited the good photocatalytic activity even after 4 runs.This study investigated the effect of powdered activated carbon and calcium on trihalomethane toxicity in zebrafish embryos and larvae in hybrid membrane bioreactors. Two hybrid membrane bioreactors were configured with the addition of powdered activated carbon or calcium to reduce the trihalomethane formation potential. Trihalomethane formation decreased by approximately 37.2% and 30.3% in membrane bioreactor-powdered activated carbon and membrane bioreactor-calcium, respectively. Additionally, the toxic effect of trihalomethane formation was examined on zebrafish embryos and larvae. About 35% of the embryos exposed to trihalomethanes (800 ppb) showed signs of deformation, with the majority displaying coagulation within 24 h after exposure. Color preference tests, which were conducted to identify any abnormal activities of the embryos, showed an increase in preference from short to longer wavelengths upon exposure to high levels of trihalomethanes. This may indicate damage to the optical organs in zebrafish when exposed to trihalomethanes. Behavioral analysis showed reduced mobility of zebrafish larvae under different trihalomethane concentrations, indicating a decrease in the average activity time with an increasing trihalomethane concentration. The membrane bioreactor effluents were toxic to zebrafish embryos and larvae in the presence of high trihalomethane concentrations. To understand the mechanism behind trihalomethane toxicity, further studies are needed.Copper slag, which contains Fe-rich fayalite (Fe2SiO4), is a valuable solid waste that warrants further research in order to recover iron. Calcium oxide (CaO) can significantly enhance iron recovery from copper slag; however, the associated mechanism has not yet been explored. In this study, we investigated the interaction between CaO and Fe2SiO4 to obtain detailed understanding of the role of CaO in enhancing iron recovery. The presence of CaO was found to accelerate the decomposition of Fe2SiO4 via an ion-exchange-like process. Specifically, CaO dissociated into Ca(II) and a Ca-deficient Ca1-yO species at high temperatures. The Fe(II) ion at the M2 site of Fe2SiO4 was substituted by the released Ca(II) ion, resulting in the formation of [(Fe(2-x)Cax)SiO4]∙xFe(II). Subsequently, the substituted Fe(II) occupied the Ca vacancy in Ca1-yO to form (Ca(1-y)Fe(II)y)O. The disproportionation of Fe(II) and the combination reaction between CaO and the SiO2 separated from Fe2SiO4 led to the generation of the final products, viz. Fe2O3, Fe3O4, and CaSiO3. This study explains the specific role of CaO in decomposing Fe2SiO4. It would not only provide theoretical guidance for iron recovery from copper slag but also present a new perspective on the recycling of valuable resources from many other smelting slags (e.g., iron slag, lead slag, and nickel slag).Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to effectively recover these valuable metals under the premise of reducing environmental pollution is still a challenge. In this work, a green, efficient, closed-loop direct regeneration technology is proposed to reconstruct LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials from spent LIBs. Firstly, the failure mechanism of NCM523 cathode materials in the spent LIBs is analyzed deeply. It is found that the spent NCM523 material has problems such as the dissolution of lithium and transition metals, surface interface failure and structural transformation, resulting in serious deterioration of electrochemical performance. Then NCM523 material was directly regenerated by supplementing metal ions, granulation, ion doping and heat treatment. Meanwhile, PO43- polyanions were doped into the regenerated NCM material in the recovery process, showing excellent electrochemical performance with discharge capacity of 189.8 mAh g-1 at 0.1 C. The recovery process proposed in this study puts forward a new strategy for the recovery various lithium nickel cobalt manganese oxide (e.g., LiNi1/3Co1/3Mn1/3O2, LiNi0.5Co0.2Mn0.3O2, LiNi0.6Co0.2Mn0.2O2 and LiNi0.8Co0.1Mn0.1O2) and accelerates the industrialization of spent lithium ion battery recycling.A bench-scale plasma reactor was used to degrade poly- and perfluoroalkyl substances (PFAS) in landfill leachate samples obtained from three different locations. In the leachate samples before treatment, five long-chain, six short-chain perfluoroalkyl acids (PFAAs) and eight PFAA precursors were detected in a wide concentration range (~102 to 105 ng/L; total oxidizable precursors (TOP) ~106 ng/L). The concentration of perfluorooctane sulfonate (PFOS) plus perfluorooctanoic acid (PFOA) ranged between 2000 and 3000 ng/L. Plasma-based water treatment of 500 mL samples resulted in faster removal rates for longer-chain than shorter chain length PFAAs. Both PFOS and PFOA were removed to below United States Environmental Protection Agency's (USEPA's) health advisory concentration level (HAL) concentrations (99.9% and 10-99.9%, respectively. The removal rate constant (kPFOA+PFOS) for combined PFOA and PFOS ranged between 0.20 and 0.34 min-1. Overall, 60 ± 2% of the TOP concentration and 34 ± 2% of the TOC were removed. No effect of non-PFAS co-contaminants (e.g., total initial organic carbon concentration ~2000 mg/L) on the degradation efficiency was observed. Short-chain PFAA removal efficacy was enhanced by adding a cationic surfactant (cetrimonium bromide). Overall, the results indicate that plasma-based technology may be a viable technology for the treatment of PFAS-contaminated landfill leachates.Glyphosate is the most common broad-spectrum herbicide. It targets the key enzyme of the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), which synthesizes three essential aromatic amino acids (phenylalanine, tyrosine and tryptophan) in plants. Because the shikimate pathway is also found in many prokaryotes and fungi, the widespread use of glyphosate may have unsuspected impacts on the diversity and composition of microbial communities, including the human gut microbiome. Here, we introduce the first bioinformatics method to assess the potential sensitivity of organisms to glyphosate based on the type of EPSPS enzyme. We have precomputed a dataset of EPSPS sequences from thousands of species that will be an invaluable resource to advancing the research field. This novel methodology can classify sequences from nearly 90% of eukaryotes and >80% of prokaryotes. A conservative estimate from our results shows that 54% of species in the core human gut microbiome are sensitive to glyphosate.Due to the huge threat of formaldehyde (FA) on human beings, the development of chemical sensors for swift detection of FA in solutions and gas phase is highly anticipated. In this paper, a versatile logic detector and a portable fluorescent film based on small-scaled Eu-based MOF were applied successfully to detect FA in solutions and gas phase, respectively. For FA in aqueous solution, the design of logic detector will efficiently identify FA in different concentration ranges when the FA concentration are 0-500 ppb, 500-1000 ppb and >1000 ppb, the output signals of logic detector are the concentration level of FA ("L", "H" and "VH"), and accompanied by red, purple and blue signal lamps to remind, respectively. selleck kinase inhibitor For FA in the air, the color of rigid film sensor will gradually change from red to blue with the increase of FA under UV lamp, and the detection limit of gaseous FA is 11.8 ppb. Through the preparation of logic devices and fluorescent films, Eu-based MOF realized swift detection of FA in solutions and gas phase, which will be very helpful to improve the human response level to FA from different emission sources.Hexavalent chromium (Cr(VI)) is a common heavy metal pollutant in environment and has been proved possessing the cytotoxicity. In this study, we aimed to investigate the role of activating transcription factor 6 (ATF-6) in apoptosis of chicken embryo fibroblasts cell line (DF-1) induced by Cr(VI). Firstly, DF-1 cells were exposed to Cr(VI) to establish the cytotoxicity model, then the cell apoptosis and ATF-6 protein level were analyzed. By silencing ATF-6 gene, changes of the apoptosis rate and apoptotic proteins were examined. To further explore the regulatory mechanism of ATF-6, endoplasmic reticulum (ER) stress, mitochondrial function, reactive oxygen species (ROS) level, as well as the related pathway were evaluated. Results showed that Cr(VI) can result in DF-1 cell apoptosis, along with mitochondrial membrane potential (MMP) reducing and ER stress. Meanwhile, ATF-6 silencing lowered the apoptosis rate and ER stress level, showing with the decrease of XBP-1, PERK, GRP78, Caspase-12, Cleaved Caspase-3 and the increase of Bcl-2. Further analysis found that ATF-6 silencing down-regulated ROS and caused MMP loss, suggesting that ATF-6 silencing inhibited Cr(VI)-induced mitochondrial damage. In conclusion, this study indicate that ATF-6 plays an important regulatory role in Cr(VI)-induced DF-1 cell apoptosis through the ER stress and mitochondrial pathway.

Autoři článku: Gammelgaardjennings1631 (Mckee Rivas)