Gammelgaardavery6674
Soft matter covers a wide range of materials based on linear or branched polymers, gels and rubbers, amphiphilic (macro)molecules, colloids, and self-assembled structures. These materials have applications in various industries, all highly important for our daily life, and they control all biological functions; therefore, controlling and tailoring their properties is crucial. One way to approach this target is defect engineering, which aims to control defects in the material's structure, and/or to purposely add defects into it to trigger specific functions. While this approach has been a striking success story in crystalline inorganic hard matter, both for mechanical and electronic properties, and has also been applied to organic hard materials, defect engineering is rarely used in soft matter design. In this review, we present a survey on investigations on defects and/or defect engineering in nine classes of soft matter composed of liquid crystals, colloids, linear polymers with moderate degree of branching, hyperbranched polymers and dendrimers, conjugated polymers, polymeric networks, self-assembled amphiphiles and proteins, block copolymers and supramolecular polymers. This overview proposes a promising role of this approach for tuning the properties of soft matter.Diabetes and its complications have become crucial public health challenges worldwide. In this study, we aim to develop a dissolving and glucose-responsive insulin-releasing microneedle (MN) patch system, for minimally invasive and glucose-responsive insulin delivery for type 1 diabetes therapy. The MNs were composed of dissolving and biodegradable gelatin and starch materials, which encapsulated glucose-responsive insulin-releasing gold nanocluster (AuNC) nanocarriers. The fabricated MNs had a complete and uniform structure, consisting of an array of 11 × 11 conical needles, with a needle height of 756 μm, a bottom diameter of 356 μm, a tip diameter of 10 μm, and a tip-to-tip distance of 591 μm. The encapsulated AuNC nanocarriers as additives in the MNs enhanced the mechanical strength of the MNs, and facilitated the penetration of the MNs into the skins of mice. Moreover, the AuNC nanocarrier drugs in the MNs enabled MN patches with a glucose-responsive insulin releasing behavior. With one transdermal application of MN patches on the dorsal skin of mice, the MN patches effectively regulated the BG levels of mice in normoglycemic ranges for 1 to 2 days, and effectively alleviated the diabetic symptoms in type 1 diabetic mice. This dissolving and glucose-responsive insulin-releasing MN patch system realized a closed-loop administration of insulin with minimal invasion, providing great potential applications for type 1 diabetes therapy.As a commonly used treatment method for cancer, chemotherapy is greatly limited by the side effects of chemotherapy drugs and the multiple drug resistance that develops. Nanogels are considered ideal drug carriers due to their high stability, high water content and excellent drug loading capacities. To achieve more precise and intelligent drug delivery in tumor tissues, various environmentally responsive nanogels have been widely developed. Compared to normal tissue, tumor tissue exhibits a lower pH value. selleck chemicals llc Therefore, the pH gradients between the tumor microenvironment and the normal physiological environment can be used to design pH-sensitive nanogels to regulate the delivery and release of antitumor drugs. This article mainly introduces the application of pH-sensitive nanogels in cancer treatment, hoping to provide a reference for the development of cancer treatment.Existing CRISPR/cas-based biosensors usually improve sensitivity by target amplification, which is time-consuming and susceptible to impurities in complex biofluid. Herein, this is the first time a cascade CRISPR/cas (casCRISPR) system has been developed, which can provide a detection limit of 1.33 fM (∼1000 times lower than direct Cas13a-based miRNA detection) and single-base resolution for miR-17 detection without resorting to target amplification. casCRISPR can also be applied to detect miRNA in complicated cell extracts and serum samples. Overall, casCRISPR will provide a heuristic idea for CRISPR/cas based biosensing, and could be a promising tool for miRNA diagnostics.Correction for 'Circumvention of common labelling artefacts using secondary nanobodies' by Shama Sograte-Idrissi et al., Nanoscale, 2020, 12, 10226-10239, DOI 10.1039/D0NR00227E.Natural living systems are driven by delicate protein networks whose functions are precisely controlled by many parameters, such as number, distance, orientation, and position. Focusing on regulation rather than just imitation, the construction of artificial protein networks is important in many research areas, including biomedicine, synthetic biology and chemical biology. DNA origami, sophisticated nanostructures with rational design, can offer predictable, programmable, and addressable scaffolds for protein assembly with nanometer precision. Recently, many interdisciplinary efforts have achieved the precise construction of DNA origami-based protein networks, and their emerging application in many areas. To inspire more fantastic research and applications, herein we highlight the applicability and potentiality of DNA origami-based protein networks. After a brief introduction to the development and features of DNA origami, some important factors for the precise construction of DNA origami-based protein networks are discussed, including protein-DNA conjugation methods, networks with different patterns and the controllable parameters in the networks. The discussion then focuses on the emerging application of DNA origami-based protein networks in several areas, including enzymatic reaction regulation, sensing, bionics, biophysics, and biomedicine. Finally, current challenges and opportunities in this research field are discussed.Due to the easy functionality and structural diversity of coordination polymers (CPs) coupled with superior thermal stability, many researchers have been prompted to explore the opportunity of introducing these hybrid materials as active components in various electronic devices, such as light emitting diodes (LED), solar cells, field effect transistors (FET), and Schottky barrier diodes (SBD). Therefore, the judicious selection of the structural components of CPs is directly related to their structure-property relationship and applications. One-dimensional (1D) CPs have recently emerged as excellent electrical conductors and are gaining enormous attention owing to their simple chain-like coordination arrays. In this article, we review the rational design strategies for synthesising 1D CPs and also point out the structural factors that affect the charge transport properties as well as the electrical conductivity of these materials.