Gammelgaardabbott7054
ea with natural forage cover more frequently than the barn. On the calving day, cows spent more time lying down with more short bouts of lying, and crossed more sections compared with the baseline day. Steps were affected by an interactive effect of day, parity, and heat stress; nulliparous heifers took more steps on the calving day during conditions of heat stress compared with no heat stress. Results indicate that cows and heifers had different preferences for their environment at calving, and when provided access to pasture, both changed their lying and exploratory behavior on the day of calving compared with a previous day. Functional traits, such as fertility and lactation persistency, are becoming relevant breeding goals for dairy cattle. Fertility is a key element for herd profitability and animal welfare; in particular, calving interval (CIN) is an indicator of female fertility that can be easily recorded. Lactation persistency (LPE; i.e., the ability of a cow to maintain a high milk yield after the lactation peak) is economically important and is related to several other traits, such as feed efficiency, health, and reproduction. The selection of these functional traits is constrained by their low heritability. In this study, variance components for CIN and LPE in the Italian Simmental cattle breed were estimated using genomic and pedigree information under the single-step genomic framework. this website A data set of 594,257 CIN records (from 275,399 cows) and 285,213 LPE records (from 1563,389 cows) was considered. Phenotypes were limited up to the third parity. The pedigree contained about 2 million animals, and 7,246 genotypes were ae Italian Simmental breeding program. The use of a single-step approach may provide better results for young genotyped animals without their own phenotypes. The present review focuses on methyl donor metabolism and nutrition in the periparturient and lactating dairy cow. Methyl donors are involved in one-carbon metabolism, which includes the folate and Met cycles. These cycles work in unison to support lipid, nucleotide, and protein synthesis, as well as methylation reactions and the maintenance of redox status. A key feature of one-carbon metabolism is the multi-step conversion of tetrahydrofolate to 5-methyltetrahyrofolate. Homocysteine and 5-methyltetrahyrofolate are utilized by vitamin B12-dependent Met synthase to couple the folate and Met cycles and generate Met. Methionine may also be remethylated from choline-derived betaine under the action of betaine hydroxymethyltransferase. Regardless, Met is converted within the Met cycle to S-adenosylmethionine, which is universally utilized in methyl-group transfer reactions including the synthesis of phosphatidylcholine. Homocysteine may also enter the transsulfuration pathway to generate glutathione or taurine fontation, fatty acid feeding strategies that may optimize methyl donor supplementation efficacy, and potential epigenetic mechanisms are also considered. Milk production and time effects are considered related to heat stress but they have not yet been combined in predictive models. In two parts, this study aimed to develop new models to predict heat stress (rectal temperature and respiration rate) of lactating dairy cows by inputting predictors, including ambient temperature (Ta), relative humidity (RH), wind speed (WS), milk yield (MY), and time blocks. In the first part of the study, we built the quantitative foundation for the second part, including the regression relation between respiration rate and rectal temperature (to convert predicted respiration rate to predicted body temperature), as well as between rectal temperature and respiration rate when heat stress was triggered (to recognize whether herds were under stress). In the second part, we built models that combined the abovementioned predictors to predict respiration rate. In part I, data were obtained from 45 high-producing Holstein cows within a Ta range of 9.5 to 30.8°C. We found a very strong c30-0800 h, respectively (reducing the intercept of the expression in 0630-0800 h). Compared with temperature-humidity index equations, the proposed model performed better at suppressing prediction error, and had better sensitivity and accuracy in recognizing whether heat stress was triggered. Given consumer interest in Mozzarella di latte di Bufala and other cheeses, and the growing interest of the cheese industry in offering products adequate for lactovegetarian consumers, this study aimed to compare clotting capacity of vegetal and animal rennet in buffalo milk. Milk coagulation properties of 1,261 buffalo bulk milk samples collected during milk quality testing were assessed by lactodynamography using commercial animal (75% chymosin and 25% bovine pepsin) and vegetal (Cynara cardunculus) rennets. Chemical composition of milk samples was predicted by MilkoScan (Foss Analytics, Hillerød, Denmark) calibrated with specific buffalo standards. Rennet effect (animal versus vegetal) was statistically analyzed with a paired t-test. Fat, protein, and lactose contents of milk samples were 7.94%, 4.52%, and 4.80%, respectively. A similar variability of milk coagulation properties was observed with both rennets, with the exception of greater variability of curd firmness at 30 min after the addition of vegetal rennet compared with animal rennet (73 and 26%, respectively). On average, when using plant rennet, milk started to coagulate and reached the 20-mm coagulum 12 ± 0.22 min and 1.9 ± 0.20 min, respectively, later than with animal rennet. Thirty minutes after rennet addition, curds were almost twice as firm in animal as in vegetal rennet (difference of 23.92 ± 0.66 mm). However, curd firmness at 60 min was only 1.21 ± 0.39 mm thicker with vegetal than with animal rennet. Moreover, when using animal rennet, 99.52% of samples started coagulating within the first 30 min of analysis, whereas only 70.42% did so when using vegetal rennet. We conclude that vegetal rennet has the capacity to coagulate buffalo milk, achieving a similar curd firmness to that of animal rennet at 60 min. Further studies are needed to evaluate the sensory characteristics and consumer acceptability of Mozzarella di latte di Bufala processed with vegetal rennet.