Gamblespencer3460

Z Iurium Wiki

Thermal modification was simply performed on molybdenite to enhance the adsorption of Pb(II) in aqueous solutions, and the root of this phenomenon was well studied in this work. Various thermal modification temperatures at 300 °C, 400 °C and 500 °C were applied to modify the surface property of molybdenite, producing different degrees of edge defect and surface wettability in molybdenite samples. Contact angle tests, atomic force microscopy (AFM) observations and adsorption tests illustrated that molybdenite thermally modified at 400 °C contained most edge defects and achieved a 147.846 mg/g Pb(II) adsorption, which was almost 10 times of that obtained by natural molybdenite. The adsorption experiment also indicated that the increase of surface hydrophilia of molybdenite would slightly benefit the Pb(II) adsorption. The X-ray photoelectron spectroscope (XPS) exhibited that a strong chemical adsorption existed between Pb(II) and S elements. AFM study further demonstrated that the interaction between Pb(II) and S atoms exposed at the triangular edges of molybdenite were the intrinsic reason for the great enhancement of Pb(II) adsorption. This work provides a new insight to absorb Pb(II) in aqueous solutions using natural molybdenite. Sewage sludge (SS) char can be potentially applied to De-NOx processes but it should be active enough and the relevant CO emissions should be controlled. In this paper activated SS chars have been prepared by using a simple KOH impregnation-carbonisation method and the activated chars are applied to remove NOx from flue gases within temperature range of 100-250 °C, acting as both reductants and catalysts. Special attention is paid to inhibiting CO emission in the process. Four reductive agents are adopted to check the catalytic effect of the activated SS chars. The results show that the activated SS chars (i.e. SC-KOHs) present a higher adsorption-reduction ability with much lower CO emission than that of non-activated SS chars (i.e. Selleckchem CP21 SC-Raws). SC-KOH produced at 800 °C (SC-KOH-800) shows obvious chemical adsorption behaviors, its adsorption capacity for NO is higher than 8.06 mg.L-1, superior to the coal-based activated carbon. Hydrazine hydrate is found to enhance De-NOx performance with SC-KOHs acting as catalysts, especially at higher temperatures. However, the De-NOx efficiency decreased when ammonia, urea and urea involved reductants were used. The physicochemical structure of the SS chars was characterized to show that the SC-KOHs are more porous with higher BET areas and pore volumes. Simultaneously, the SC-KOHs are crystallized to much lower extent, less graphitised, but have richer O-containing functional groups and zeolite structure on the surface when compared to the SC-Raws, which contributed to their high activities. Moreover, SC-KOH-800 can be recommended as the suitable adsorbent/catalyst for De-NOx within 100-250 °C. Eutrophication of surface water bodies is a global problem in recent years. Dosing polluted water with oxygen releasing compounds (ORCs), especially those that can remove excessive nutrients simultaneously is regarded as one of the most economical and eco-friendly methods of treating eutrophic waters. In this study, a novel Mg-based ORC was synthesized and characterized as a magnesium hydroxide and hydrogen peroxide complex (MHHPC) with Mg to H2O2 ratio of 21. Oxygen-releasing, pH-adjusting and nutrient-removal potentials of MHHPC were evaluated in nano-pure and eutrophic water. The overall performance of MHHPC in preventing the eutrophic water from turning black and odorous was compared with the performance of other ORCs namely, MgO2, CaO2 and the combination of MgCl2 and H2O2. The results showed that MHHPC was capable of constantly releasing oxygen to aqueous phase over a period of one week. Phosphate and ammonia nitrogen in synthetic buffered water can were removed as struvite and other precipitates from the aqueous phase. In the synthetic eutrophic water, all the ORCs tested were able to reduce aqueous ammonia nitrogen below 0.5 mM, while only CaO2 and MHHPC successfully removed the aqueous phosphate. However, CaO2 and MgCl2+H2O2 significantly inhibited microbial activity. The adsorption method is generally considered a promising technique to remove inorganic and organic contaminants in an economically and environmentally friendly superior manner. In this study, organic montmorillonite sodium alginate composites were prepared, in which, montmorillonite and cationic surfactant (cetyltrimethylammonium bromide, CTAB) in different added amounts were coagulated with sodium alginate using CaCl2 as the crosslinking agent. The morphological properties of the composites were characterized thoroughly and employed in three typical target pollutants of polycyclic aromatic hydrocarbons (PAHs) (acenaphthene, fluorene, and phenanthrene) by batch adsorption experiments from aqueous solution. The composites provide an efficient alternative for PAHs removals. The composites could be stably separated and regenerated with methyl alcohol. Furthermore, the adsorption kinetic and isotherm data were well described by the Elovich kinetic and the Freundlich isotherm model, respectively. According to these, the adsorption process occurred via multilayer adsorption on the composite's energetically heterogeneous surface. Moreover, pore diffusion and hydrophobicity played a dominant role in the adsorption mechanism. Overall, our study offers a developed adsorbent that has the advantage of being recyclable, low cost, biodegradable and biocompatible for effectively removing PAHs from aqueous solution. Polymetal dust is a common industrial pollutant. While the use of remediation filters and equipment in lead smelters has reduced pollutant emission, surrounding areas remain contaminated due to the long-term transfer of heavy metals along the food chain. Here we assess the mutagenic potential of the lead-zinc smelter near Plovdiv (Bulgaria) situated in an area that has been contaminated with heavy metals for 60 years. We aimed to evaluate the genomic response of the yellow-necked mouse (A. flavicollis), a biomonitor species, in three sampling sites along the pollution gradient. Mice from Strandzha Natural Park were used as a negative control. The bioaccumulation rate of two non-essential heavy metals, lead (Pb) and cadmium (Cd), in liver tissues was determined by atomic absorption spectroscopy. Genetic alterations attributable to chronic exposure to trace levels of heavy metals were assessed in different blood cell populations using two independent methods a micronucleus test was applied to evaluate the clastogenic and aneugenic alterations in erythrocytes, while a comet assay was used to assess DNA instability, as evidenced by single- and double-stranded breaks and alkali-labile sites, in leucocytes.

Autoři článku: Gamblespencer3460 (Poole Bowles)