Fundergodfrey2518
Remarkably, the PDA nanoparticles could efficiently scavenge ROS to reduce the expression of angiogenic agents. In parallel, the particles were able to controllably release loaded anti-angiogenic drugs in response to oxidative stress.The fabrication of multi-gigabit magnetic random access memory (MRAM) chips requires the patterning of magnetic tunnel junctions at very small dimensions (sub-30 nm) and a very dense pitch. This remains a challenge due to the difficulty in etching magnetic tunnel junction stacks. We previously proposed a strategy to circumvent this problem by depositing the magnetic tunnel junction material on prepatterned metallic pillars, resulting in the junction being naturally shaped during deposition. Upon electrical contact, the deposit on top of the pillars constitutes the magnetic storage element of the memory cell. However, in this process, the magnetic material is also deposited in the trenches between the pillars that might affect the memory cell behaviour. Here we study the magnetic interactions between the deposit on top of the pillars and in the trenches by electron holography, at room temperature and up to 325 °C. Supported by models, we show that the additional material in the trenches is not perturbing the working principle of the memory chip and can even play the role of a flux absorber which reduces the crosstalk between neighboring dots. Besides, in the studied sample, the magnetization of the 1.4 nm thick storage layer of the dots is found to switch from out-of-plane to an in-plane configuration above 125 °C, but gradually decreases with temperature. Electron holography is shown to constitute a very efficient tool for characterizing the micromagnetic configuration of the storage layer in MRAM cells.Electrocatalytic water splitting holds great promise for renewable energy conversion and storage systems. Bcl-2 inhibitor However, it usually suffers from sluggish kinetics, which greatly hinders its real application. Here, we demonstrate the utilization of the localized surface plasmon resonance (LSPR) of Au nanorods (AuNRs) to significantly improve the electroactivity of both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at Co-MOF nanosheets (Co-MOFNs) under different polarizations. Theoretical calculations suggest that the HER enhancement can be largely attributed to the injection of hot electrons from plasmonic AuNRs to Co-MOFN catalysts, which upraises the Fermi level of Co-MOFNs, increasing their reductive activity towards the HER. Regarding the promotion of the OER, it is indicated that the formed holes in Co-MOFNs should majorly locate on the surface oxygen atoms, which may also serve as active positions working jointly with neighboring Co atoms in oxidizing OH-. The plasmon enhanced HER and OER electrocatalysis could also be observed over AuNR/Ni-MOFN and AuNR/NiCo-MOFN catalysts, suggesting the generality of this strategy. This study highlights the possibility of accelerating both the HER and OER efficiency by AuNR plasmonic excitation and provides a new route towards the design of more efficient water splitting systems with the assistance of light energy.A key aspect of life's evolution on Earth is the adaptation of proteins to be stable and work in a very wide range of temperature conditions. A detailed understanding of the associated molecular mechanisms would also help to design enzymes optimized for biotechnological processes. Despite important advances, a comprehensive picture of how thermophilic enzymes succeed in functioning under extreme temperatures remains incomplete. Here, we examine the temperature dependence of stability and of flexibility in the mesophilic monomeric Escherichia coli (Ec) and thermophilic dimeric Thermotoga maritima (Tm) homologs of the paradigm dihydrofolate reductase (DHFR) enzyme. We use all-atom molecular dynamics simulations and a replica-exchange scheme that allows to enhance the conformational sampling while providing at the same time a detailed understanding of the enzymes' behavior at increasing temperatures. We show that this approach reproduces the stability shift between the two homologs, and provides a molecular descThe majority of problems in analytical Raman spectroscopy are mathematically over-determined, where many more spectral variables are measured than analytic outputs (such as chemical concentrations) are calculated. Thus, to improve spectral throughput and simplify system design, some researchers have explored the use of low resolution Raman systems for cell or tissue classification, achieving accuracy independent of spectral resolution. However, the tradeoffs inherent in this approach have not been systematically studied. Here, we theoretically and experimentally explore the relationship between spectral resolution and analytical error. We show that decreased spectral resolution leads to spectral signal-to-noise ratio and therefore more reliable results and lower limits of detection for equivalent integration times in blind unmixing of hyperspectral images. Our theoretical analysis demonstrates that the primary benefit of low resolution Raman spectroscopy is in overcoming detector noise (such as thermal or electronic noise). Therefore, the benefits are most pronounced when utilizing lower-grade, uncooled detectors. Therefore, using a low-cost CMOS camera we experimentally demonstrate the ability of low resolution Raman spectroscopy to achieve substantially improved imaging performance compared to fully-resolved Raman spectral imaging, paving the way for cost-effective, pervasive Raman spectroscopy.Solar-driven reduction of CO2 into fuels/feedstocks is a promising strategy for addressing energy and CO2 emission issues. Despite great research efforts, it still remains a grand challenge to achieve efficient and highly selective reduction of CO2 owing to the large bond energy of CO2 and the diversity of reduction products. In addition to the control of light harvesting and charge transfer like photocatalytic water splitting, the design of catalytically active sites is highly important to promote CO2 reduction activity and selectivity (e.g., C-C coupling). In fact, we can learn a lot from conventional CO2 hydrogenation and syngas conversion in terms of active site design. In this article, we demonstrate how to design catalytically active sites for efficient and highly selective photocatalytic reduction of CO2 by sorting out the rules from the existing research on conventional COx hydrogenation, with a focus on enhancing C[double bond, length as m-dash]O activation and C-C coupling to form value-added products.