Fryrivas4962

Z Iurium Wiki

Inorganic cesium lead halide (CsPbI3) is a promising candidate for next-generation photovoltaic devices, but photoactive α-phase CsPbI3 can rapidly transform to non-photoactive yellow δ-CsPbI3 in a humid atmosphere. Here, we report that partial substitution of cesium by the potassium or rubidium element can effectively improve the phase stability against moisture by forming a water-repelling surface layer with Rb/K segregation. Using density functional theory, we found that the water-induced polarization, which triggers the PbI62- octahedron distortion and accelerates the phase transition, can be effectively alleviated by incorporating Rb/K elements. Further exploration of transition states suggests that Rb/K doped surface layers result in a higher activation barrier for water penetration. The electronic structure analysis further reveals that the barrier enhancement originates from the absence of the participation of inner 5p electrons in Rb/K-H2O binding, which induces a much lower energy barrier in pristine CsPbI3. Based on these improvements, the doped perovskites remained in the major α-phase after direct exposure to ambient air (RH ∼ 30%) for 5 hours, while pristine CsPbI3 showed an irreversible degradation. With the clarified mechanism of enhanced phase stability of Rb/K incorporation, we suggest such a doping method as a promising strategy to be widely applied in the field of photovoltaic devices.Because of their excellent capacity to significantly improve the bioavailability and solubility of chemotherapy drugs, block copolymer micelles are widely utilized for chemotherapy drug delivery. In order to further improve the anti-tumor ability and reduce unwanted side effects of drugs, tumor-targeting peptides were used to functionalize the surface of polymer micelles so that the micelles can target tumor tissues. Herein, we synthesized a kind of PEG-PLA that is maleimide-terminated and then conjugated with a specific peptide F3 which revealed specific capacity binding to nucleolin that is overexpressed on the surface of many tumor cells. Then, F3 conjugated, paclitaxel loaded nanoparticles (F3-NP-PTX) were prepared as stable micelles that displayed an enhanced accumulation via a peptide-mediated cellular association in human breast cancer cells (MCF-7). Furthermore, F3-NP-PTX showed a prominent anti-tumor efficacy compared with non-targeting nanoparticles (NP-PTX) both in vitro and in vivo, and showed great potential as an efficacious targeting drug delivery system for breast cancer treatment.OBJECTIVES This study aimed to investigate the prevalence of insomnia and risk factors among different job categories of steel workers in China, in order to improve their quality of occupational life. MATERIAL AND METHODS A cross-sectional face-to-face survey was conducted which involved 5834 steel workers from a large enterprise located in northern China, including front-line, maintenance and inspection, and other auxiliary workers. The were used to assess the status of insomnia and job stress/social support, respectively. Multivariable logistic regression was used to identify factors influencing insomnia. RESULTS The overall prevalence of insomnia was determined at 42.0% (95% confidence interval 40.7%-43.2%). For front-line, maintenance and inspection, and other auxiliary workers, the prevalence was 42.3%, 39.8%, and 47.9% (p = 0.001), respectively. The participants with high stress and low support, and those who had experienced ≥2 major life events in the past 12 months, compared to those with low stress and high support, and those without major events, displayed an increased risk of insomnia among all 3 job categories (the adjusted odds ratio ranged 1.56-2.38 and 1.30-1.75, respectively). The educational level, shift work, alcohol consumption, and present illness were identified as influencing factors of insomnia for 1 or 2 job categories. CONCLUSIONS The prevalence of insomnia was the highest in the group of other auxiliary steel workers among the 3 job categories of steel workers under consideration. While the influencing factors of insomnia differed among the groups, job stress and major life events were common risk factors of insomnia among the 3 categories of steel workers. Int J Occup Med Environ Health. 2020;33(2)215-33. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.BACKGROUND The thyroid hormone metabolite 3-iodothyronamine (T1AM) is rapidly emerging as promising compound of decreasing heart rate and lowering cardiac output. The aim of our study was to fully understand the molecular mechanism of T1AM on cardiomyocytes and its potential targets in cardiovascular diseases. MATERIAL AND METHODS We developed an in vitro myocardial ischemia-reperfusion injury model of AC-16 cells by hypoxia-reoxygenation injury. Cell viability of AC-16 cells was detected using CCK-8 assay and apoptosis was detected by flow cytometry. RNA-seq was used to characterize the gene expression in H/R-induced AC-16 cells after T1AM treatment. The mRNA levels of FoxO1, PPARalpha, Akt, and GCK and the protein levels of PPARalpha, GCK, and components of the Akt/FoxO1 pathway were detected by qRT-PCR and Western blotting, respectively. RESULTS Exogenous T1AM increased the H/R-induced AC-16 cell viability in a relatively low concentration. A total of 210 DEGs, including 142 upregulated and 68 downregulated genes, were determined in H/R-induced AC-16 cells treated with or without T1AM. A Venn diagram showed 135 common DEGs. The FoxO signaling pathway was identified via KEGG enrichment analysis of these 135 DEGs. Moreover, T1AM mediated hypometabolism and reduced the apoptosis of H/R-induced AC-16 cells via the Akt/FoxO1 pathway. CONCLUSIONS Exogenous T1AM protects against cell injury induced by H/R in AC-16 cells via regulation of the FoxO signaling pathway. Our results suggest that T1AM can play a preventive role in myocardial H/R injury and also provide new insight for clinical management of AMI patients.The transition sequence in the Heusler alloy Ni50Mn34In8Ga8 has been determined from measurements of elasticity, heat flow and magnetism to be paramagnetic austenite → paramagnetic martensite → ferromagnetic martensite at ~335 and ~260 K, respectively, during cooling. G Protein activator The overall pattern of elastic stiffening/softening and acoustic loss is typical of a system with bilinear coupling between symmetry breaking strain and the driving order parameter in a temperature interval below the transition point in which ferroelastic twin walls remain mobile under the influence of external stress. Divergence between zero-field-cooling (ZFC) and field-cooling (FC) determinations of DC magnetisation below ~220 K indicates that a frustrated magnetic glass develops in the ferromagnetic martensite. An AC magnetic anomaly which shows Vogel-Fulcher dynamics in the vicinity of ~160 K is evidence of a further glassy freezing process. This coincides with an acoustic loss peak and slight elastic stiffening that is typical of the outcome of freezing of ferroelastic twin walls.

Autoři článku: Fryrivas4962 (Kenney Pope)