Fryholmes4970
Hormonal alterations occurring under late gestation heat stress may disturb mammary gland remodelling, resulting in a reduced milk yield during the subsequent lactation. We investigated the effects of an altered endocrine environment on mammary gene expression at different stages of the dry period. Mammary gland biopsies from in vivo-cooled (CL) or heat-stressed (HT) cows were collected at d 3 and 35 relative to dry-off and divided into explants. Explants were incubated in vitro for 24 h in one of three media Basal no prolactin or estrogen; CL-mimic Basal + low prolactin + high 17β-estradiol, or HT-mimic Basal + high prolactin + low 17β-estradiol. Real time qPCR was used to quantify gene expression. We established that late-gestation heat stress changes the expression of prolactin and oestrogen receptors, downregulates genes involved in apoptosis, autophagy and proliferation at d 3 and upregulates genes related to those cellular processes at d 35. Moreover, compared with in vivo treatments, we showed that the expression of fewer genes was impacted by in vitro treatments which aimed to mimic the hormonal response of cows exposed to a different environment. Further research will continue to uncover the mechanisms behind the production impairments caused by late-gestation heat stress.Sirtuins (SIRTs) are nicotinamide adenine dinucleotide-dependent histone deacetylases that incorporate complex functions in the mechanisms of cell physiology. Mammals have seven distinct members of the SIRT family (SIRT1-7), which play an important role in a well-maintained network of metabolic pathways that control and adapt the cell to the environment, energy availability and cellular stress. Until recently, very few studies investigated the role of SIRTs in modulating viral infection and progeny. learn more Recent studies have demonstrated that SIRT1 and SIRT2 are promising antiviral targets because of their specific connection to numerous metabolic and regulatory processes affected during infection. In the present review, we summarize some of the recent progress in SIRTs biochemistry and their emerging function as antiviral targets. We also discuss the potential of natural polyphenol-based SIRT modulators to control their functional roles in several diseases including viral infections.Intraoperative ultrasound elastography (IOUS-E) is a novel image modality applied in brain tumor assessment. However, the potential links between elastographic findings and other histological and neuroimaging features are unknown. This study aims to find associations between brain tumor elasticity, diffusion tensor imaging (DTI) metrics, and cell proliferation. A retrospective study was conducted to analyze consecutively admitted patients who underwent craniotomy for supratentorial brain tumors between March 2018 and February 2020. Patients evaluated by IOUS-E and preoperative DTI were included. A semi-quantitative analysis was performed to calculate the mean tissue elasticity (MTE). Diffusion coefficients and the tumor proliferation index by Ki-67 were registered. Relationships between the continuous variables were determined using the Spearman ρ test. A predictive model was developed based on non-linear regression using the MTE as the dependent variable. Forty patients were evaluated. The pathologic diagnoses were as follows 21 high-grade gliomas (HGG); 9 low-grade gliomas (LGG); and 10 meningiomas. Cases with a proliferation index of less than 10% had significantly higher medians of MTE (110.34 vs. 79.99, p less then 0.001) and fractional anisotropy (FA) (0.24 vs. 0.19, p = 0.020). We found a strong positive correlation between MTE and FA (rs (38) = 0.91, p less then 0.001). A cubic spline non-linear regression model was obtained to predict tumoral MTE from FA (R2 = 0.78, p less then 0.001). According to our results, tumor elasticity is associated with histopathological and DTI-derived metrics. These findings support the usefulness of IOUS-E as a complementary tool in brain tumor surgery.The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota-gut-brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer's disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood-brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.Sclerotherapy is the chemical occlusion of vessels using an intravenous injection of a liquid or foamed sclerosing agent that is used in the therapy of blood and lymphatic vessels malformations in the young, and for spider veins, smaller varicose veins, hemorrhoids and hydroceles in adults. This study aimed to assess the effectiveness of mechanosclerotherapy of venous veins with a new device-Flebogrif®-based on an animal model. The experiment was performed on nine Polish Merino sheep weighing 40-50 kilograms. The animals were anesthetized intravenously. The material was divided into three groups two experimental (1 and 2) and control (3) group. The first experimental group was treated with the use of Flebogrif® and a sclerosant simultaneously, while only Flebogrif® was used in the second experimental group. Flebogrif® was applied into the lateral saphenous vein of both pelvic limbs. The vessel wall thickness was estimated at four points of the histological image in mm (V1, V2, V3, V4). For one month, the animals were euthanized, and the occlusion rate of the treated veins and changes in the vein wall were determined.