Froststevenson2197
We demonstrate a continuous wave (CW) seeded synchronization-free optical parametric amplifier (OPA) pumped by a picosecond, 1 µm laser and show its performance when used as a simple yet powerful source for label-free coherent anti-Stokes Raman scattering (CARS), concurrent second harmonic generation (SHG), and two-photon fluorescence microscopy in an epi-detection geometry. The average power level of above 175 mW, spectral resolution of 8 cm-1, and 2 ps pulse duration are well optimized for CARS microscopy in bio-science and bio-medical imaging systems. Our OPA is a much simpler setup than either the "gold-standard" laser and optical parametric oscillator (OPO) combination traditionally used for CARS imaging, or the more recently developed OPA systems pumped with femtosecond pulses [1]. Rapid and accurate tuning between resonances was achieved by changing the poled channels and temperature of the periodically-poled lithium niobate (PPLN) OPA crystal together with the OPA seed wavelength. The Pump-Stokes frequency detuning range fully covered the C-H stretching band used for the imaging of lipids. By enabling three multiphoton techniques using a compact, synchronization free laser source, our work paves the way for the translation of label-free multi-photon microscopy imaging from biomedical research to an imaging based diagnostic tool for use in the healthcare arena.As the scientific community seeks efficient optical neural interfaces with sub-cortical structures of the mouse brain, a wide set of technologies and methods is being developed to monitor cellular events through fluorescence signals generated by genetically encoded molecules. Among these technologies, tapered optical fibers (TFs) take advantage of the modal properties of narrowing waveguides to enable both depth-resolved and wide-volume light collection from scattering tissue, with minimized invasiveness with respect to standard flat fiber stubs (FFs). However, light guided in patch cords as well as in FFs and TFs can result in autofluorescence (AF) signal, which can act as a source of time-variable noise and limit their application to probe fluorescence lifetime in vivo. In this work, we compare the AF signal of FFs and TFs, highlighting the influence of the cladding composition on AF generation. We show that the autofluorescence signal generated in TFs has a peculiar coupling pattern with guided modes, and that far-field detection can be exploited to separate functional fluorescence from AF. On these bases, we provide evidence that TFs can be employed to implement depth-resolved fluorescence lifetime photometry, potentially enabling the extraction of a new set of information from deep brain regions, as time-correlating single photon counting starts to be applied in freely-moving animals to monitor the intracellular biochemical state of neurons.A new method is presented for full-field optical coherence tomography imaging, which permits capturing single shot phase sensitive imaging through simultaneous acquisition of four phase-shifted images with a single camera using unpolarized light for object illumination. Our method retains the full dynamic range of the camera by using different areas of a single camera sensor to capture each image. We demonstrate the performance of our method by imaging phantoms and live cultures of fibroblast, cancer, and macrophage cells to achieve 59 dB sensitivity with isotropic resolution down to 1 μm, and displacement sensitivity down to 0.1 nm. Our method can serve as a platform for developing high resolution imaging systems because when used in conjunction with broadband spatially incoherent light sources, the resolution is not affected by optical aberrations or speckle noise.Fluorescence microscopy images are inevitably contaminated by background intensity contributions. selleck Fluorescence from out-of-focus planes and scattered light are important sources of slowly varying, low spatial frequency background, whereas background varying from pixel to pixel (high frequency noise) is introduced by the detection system. Here we present a powerful, easy-to-use software, wavelet-based background and noise subtraction (WBNS), which effectively removes both of these components. To assess its performance, we apply WBNS to synthetic images and compare the results quantitatively with the ground truth and with images processed by other background removal algorithms. We further evaluate WBNS on real images taken with a light-sheet microscope and a super-resolution stimulated emission depletion microscope. For both cases, we compare the WBNS algorithm with hardware-based background removal techniques and present a quantitative assessment of the results. WBNS shows an excellent performance in all these applications and significantly enhances the visual appearance of fluorescence images. Moreover, it may serve as a pre-processing step for further quantitative analysis.Optical coherence tomography (OCT) is a growing imaging technique for real-time early diagnosis of digestive system diseases. As with other well-established medical imaging modalities, OCT requires validated imaging performance and standardized test methods for performance assessment. A major limitation in the development and testing of new imaging technologies is the lack of models for simultaneous clinical procedure emulation and characterization of healthy and diseased tissues. Currently, the former can be tested in large animal models and the latter can be tested in small animal disease models or excised human biopsy samples. In this study, a 23 cm by 23 cm optical phantom was developed to mimic the thickness and near-infrared optical properties of each anatomical layer of a human colon, as well as the surface topography of colorectal polyps and visual appearance compatible with white light endoscopy.The standard treatment for breast cancer is surgical removal mainly through breast-conserving surgery (BCS). We developed a new technique based on auto-fluorescence (AF) spectral imaging and Raman spectroscopy for fast intraoperative assessment of excision margins in BCS. A new wide-field AF imaging unit based on total internal reflection (TIR) was combined with a Raman spectroscopy microscope equipped with a 785 nm laser. The wavelength of the AF excitation was optimized to 365 nm in order to maximize the discrimination of adipose tissue. This approach allows for the non-adipose regions of tissue, which are at a higher risk of containing a tumor, to be targeted more efficiently by the Raman spectroscopy measurements. The integrated TIR-AF-Raman was tested on small tissue samples as well as fresh wide local excisions, delivering the analysis of the entire cruciate surface of BCS specimens (5.1 × 7.6 cm2) in less than 45 minutes and also providing information regarding the location of the tumor in the specimen.