Frostrasmussen3426
Introduction Current guidelines advocate empirical antibiotic treatment (EAT) in haematological patients with febrile neutropenia. However, the optimal duration of EAT is unknown. In 2011, we have introduced a protocol, promoting discontinuation of carbapenems as EAT after 3 days in most patients and discouraging the standard use of vancomycin. This study assesses the effect of introducing this protocol on carbapenem and vancomycin use in high-risk haematological patients and its safety. Methods A retrospective before-after study was performed comparing a cohort from 2007 to 2011 (period I, before restrictive EAT use) with a cohort from 2011 to 2014 (period II, restrictive EAT use). Neutropenic episodes related to chemotherapy or stem cell transplantation (SCT) in patients with acute myeloid leukaemia (AML) or high-risk myelodysplastic syndrome (MDS) were analysed. The primary outcome was the use of carbapenems and vancomycin as EAT during neutropenia, expressed as days of therapy (DOT)/100 neutropenic days a) and positive blood cultures (4/116 in period I, 2/152 in period II) was detected. Conclusion The introduction of a protocol promoting restrictive use of EAT resulted in reduction of carbapenem and vancomycin use and appears to be safe in AML or high-risk MDS patients with febrile neutropenia during chemotherapy or SCT.Background Alzheimer's disease is a neurodegenerative disorder. Therapeutically, a transplantation of bone marrow mesenchymal stem cells (BMMSCs) can play a beneficial role in animal models of Alzheimer's disease. However, the relevant mechanism remains to be fully elucidated. Main body Subsequent to the transplantation of BMMSCs, memory loss and cognitive impairment were significantly improved in animal models with Alzheimer's disease (AD). Potential mechanisms involved neurogenesis, apoptosis, angiogenesis, inflammation, immunomodulation, etc. Nutlin-3 datasheet The above mechanisms might play different roles at certain stages. It was revealed that the transplantation of BMMSCs could alter some gene levels. Moreover, the differential expression of representative genes was responsible for neuropathological phenotypes in Alzheimer's disease, which could be used to construct gene-specific patterns. Conclusions Multiple signal pathways involve therapeutic mechanisms by which the transplantation of BMMSCs improves cognitive and behavioral deficits in AD models. Gene expression profile can be utilized to establish statistical regression model for the evaluation of therapeutic effect. The transplantation of autologous BMMSCs maybe a prospective therapy for patients with Alzheimer's disease.Background Parkinson's disease (PD) affects approximately 145,519 people in the UK. Speech impairments are common with a reported prevalence of 68%, which increase physical and mental demands during conversation, reliance on family and/or carers, and the likelihood of social withdrawal reducing quality of life. In the UK, two approaches to Speech and Language Therapy (SLT) intervention are commonly available National Health Service (NHS) SLT or Lee Silverman Voice Treatment (LSVT LOUD®). NHS SLT is tailored to the individuals' needs per local practice typically consisting of six to eight weekly sessions; LSVT LOUD® comprises 16 sessions of individual treatment with home-based practice over 4 weeks. The evidence-base for their effectiveness is inconclusive. Methods/design PD COMM is a phase III, multicentre, three-arm, unblinded, randomised controlled trial. Five hundred and forty-six people with idiopathic PD, reporting speech or voice problems will be enrolled. We will exclude those with a diagnosis of demencember 2015 and will run for 77 months. Recruitment will take place in approximately 42 sites around the UK. Discussion The trial will test the hypothesis that SLT is effective for the treatment of speech or voice problems in people with PD compared to no SLT. It will further test whether NHS SLT or LSVT LOUD® provide greater benefit and determine the cost-effectiveness of both interventions. Trial registration International Standard Randomised Controlled Trials Number (ISRCTN) Registry, ID 12421382. Registered on 18 April 2016.Background A previous clinical study reported that the addition of an amylopectin/chromium complex (ACr; Velositol®) to 6 g of whey protein (WP) significantly enhanced muscle protein synthesis (MPS). Branched-chain amino acids (BCAAs) are also well-known to enhance MPS. The aim of this study was to determine if the addition of ACr to BCAAs can enhance MPS and activate expression of the mammalian target of the rapamycin (mTOR) pathway compared to BCAAs and exercise alone in exercise-trained rats. Methods Twenty-four male Wistar rats were randomly divided into three groups (n = 8 per group) (I) Exercise control, (II) Exercise plus BCAAs (0.465 g/kg BW, a 6 g human equivalent dose (HED)), and (III) Exercise plus BCAAs (0.465 g/kg BW) and ACr (0.155 g/kg BW, a 2 g HED). All animals were trained with treadmill exercise for 10 days. On the day of the single-dose experiment, rats were exercised at 26 m/min for 2 h and then fed, via oral gavage, study product. One hour after the consumption of study product, rats weres exercise-induced MPS, and the phosphorylation of mTOR signaling proteins, compared to BCAAs and exercise alone.Background Schinzel-Giedion syndrome (SGS) is a multiple malformation syndrome mainly characterized by severe intellectual disability, distinctive facial features, and multiple congenital anomalies, including skeletal abnormalities, genitourinary and renal malformations, cardiac defects, as well as an increased pediatric cancer risk. Recently, SGS has been associated with de novo heterozygous deleterious variants in the SETBP1 gene; to date, nine different variants, clustering in exon 4 of SETBP1, have been identified in 25 patients. Case presentation In this study, by using Whole Exome Sequencing (WES), we identified a patient with a recurrent missense mutation in SETBP1, the c.2608G > A, p.(Gly870Ser) variant, previously reported as likely pathogenic. This finding allowed us to confirm the suspected clinical diagnosis of SGS. Clinical features of patients carrying the same variant, including our patient, were evaluated by a review of medical records. Conclusions Our study confirms SGS as a severe disorder potentially presenting at birth as a critically ill neonate and demonstrates the causal role of the c.