Frommarks6842

Z Iurium Wiki

n than their younger counterparts. Thus, nurses could use these findings to understand the reasons which motivate them to develop professionally.

The results of this study show that professional nurses consider taking part in continuous professional development activities in order to carry out their work better but not as a way to increase chances of promotion. The study also concluded that the older professional nurses tend to have higher intrinsic effrot motivation than their younger counterparts. Thus, nurses could use these findings to understand the reasons which motivate them to develop professionally.Maternal prenatal exposures, including bisphenol A (BPA), are associated with offspring's risk of disease later in life. Alterations in DNA methylation may be a mechanism through which altered prenatal conditions (e.g. maternal exposure to environmental toxicants) elicit this disease risk. In the Michigan Mother and Infant Pairs Cohort, maternal first-trimester urinary BPA, bisphenol F, and bisphenol S concentrations were tested for association with DNA methylation patterns in infant umbilical cord blood leukocytes (N = 69). We used the Illumina Infinium MethylationEPIC BeadChip to quantitatively evaluate DNA methylation across the epigenome; 822 020 probes passed pre-processing and quality checks. Single-site DNA methylation and bisphenol models were adjusted for infant sex, estimated cell-type proportions (determined using cell-type estimation algorithm), and batch as covariates. Thirty-eight CpG sites [false discovery rate (FDR) less then 0.05] were significantly associated with maternal BPA exposure. Increasing BPA concentrations were associated with lower DNA methylation at 87% of significant sites. BPA exposure associated DNA methylation sites were enriched for 38 pathways significant at FDR less then 0.05. The pathway or gene-set with the greatest odds of enrichment for differential methylation (FDR less then 0.05) was type I interferon receptor binding. This study provides a novel understanding of fetal response to maternal bisphenol exposure through epigenetic change.Environmental exposures such as chemical toxicants can alter gene expression and disease susceptibility through epigenetic processes. Epigenetic changes can be passed to future generations through germ cells through epigenetic transgenerational inheritance of increased disease susceptibility. The current study used an epigenome-wide association study (EWAS) to investigate whether specific transgenerational epigenetic signatures of differential DNA methylation regions (DMRs) exist that are associated with particular disease states in the F3 generation great-grand offspring of F0 generation rats exposed during gestation to the agricultural pesticide methoxychlor. The transgenerational epigenetic profiles of sperm from F3 generation methoxychlor lineage rats that have only one disease state were compared to those that have no disease. Observations identify disease specific patterns of DMRs for these transgenerational rats that can potentially serve as epigenetic biomarkers for prostate disease, kidney disease, obesity, and the presence of multiple diseases. MT-802 The chromosomal locations, genomic features, and gene associations of the DMRs are characterized. Disease specific DMR sets contained DMR-associated genes that have previously been shown to be associated with that specific disease. Future epigenetic biomarkers could potentially be developed and validated for humans as a disease susceptibility diagnostic tool to facilitate preventative medicine and management of disease.Phthalates have been demonstrated to interfere with metabolism, presumably by interacting with peroxisome proliferator-activated receptors (PPARs). However, mechanisms linking developmental phthalate exposures to long-term metabolic effects have not yet been elucidated. We investigated the hypothesis that developmental phthalate exposure has long-lasting impacts on PPAR target gene expression and DNA methylation to influence hepatic metabolic profiles across the life course. We utilized an established longitudinal mouse model of perinatal exposures to diethylhexyl phthalate and diisononyl phthalate, and a mixture of diethylhexyl phthalate+diisononyl phthalate. Exposure was through the diet and spanned from 2 weeks before mating until weaning at postnatal day 21 (PND21). Liver tissue was analyzed from the offspring of exposed and control mice at PND21 and in another cohort of exposed and control mice at 10 months of age. RNA-seq and pathway enrichment analyses indicated that acetyl-CoA metabolic processes were altered in diisononyl phthalate-exposed female livers at both PND21 and 10 months (FDR = 0.0018). Within the pathway, all 13 significant genes were potential PPAR target genes. Promoter DNA methylation was altered at three candidate genes, but persistent effects were only observed for Fasn. Targeted metabolomics indicated that phthalate-exposed females had decreased acetyl-CoA at PND21 and increased acetyl-CoA and acylcarnitines at 10 months. Together, our data suggested that perinatal phthalate exposures were associated with short- and long-term activation of PPAR target genes, which manifested as increased fatty acid production in early postnatal life and increased fatty acid oxidation in adulthood. This presents a novel molecular pathway linking developmental phthalate exposures and metabolic health outcomes.The first highly pathogenic (HP) influenza A/H7N9 was reported in Guangdong in January 2017. To investigate the emergence and spread of HP A/H7N9 in Guangdong province, we sequenced 297 viruses (58 HP A/H7N9, 19 low pathogenic (LP) A/H7N9, and 220 A/H9N2) during 2016-2017. Our analysis showed that during the fifth wave, three A/H7N9 lineages were co-circulating in Guangdong the local LP Pearl River Delta (PRD) lineage (13%), the newly imported LP Yangtze River Delta (YRD) lineage (23%), and the HP YRD lineage (64%). Previously circulating YRD-lineage LP during the third wave evolved to the YRD-lineage HP A/H7N9 in Guangdong. All YRD-lineage LP detected during the fifth wave most likely originated from newly imported viruses into Guangdong. Genotype comparison of HP A/H7N9 suggests limited outward spread of HP A/H7N9 to other provinces. The distribution of HP A/H7N9 cleavage site variants on live poultry markets differed from that found in humans, suggesting a V1-type cleavage site may facilitate human infections.

Autoři článku: Frommarks6842 (Burris Melvin)