Frenchgilmore9462
Haemoglobinopathies represent the most common single gene disorder worldwide; however, significant centre to centre variations in antenatal screening practices exist.
To assess performance of a selective antenatal haemoglobinopathy screening policy within a presumed low-prevalence Australian population. Primary outcome was the failure to screen rate for women with at least one identifiable risk factor. Secondary outcomes included outcomes of maternal screening and rates, gestations and outcomes of paternal, prenatal and neonatal testing.
A two-year retrospective cohort study identifying all women attending for public antenatal care with at least one identifiable risk factor for haemoglobinopathy.
At least one risk factor for haemoglobinopathy was identified in 8.8% of the entire pregnant cohort; however, the failure to screen rate was high at 83.7% overall. Screening was significantly more likely to be undertaken in multiparous women, those with multiple risk factors and women originating from the Midpated low-prevalence areas, will improve detection rates and ensure families receive appropriate and timely counselling.In this paper, we explore the development of the Cryo-Lift-Out (cryo-LO) technique as preparation tool for cryogenic transmission electron microscopy (cryo-TEM). What started in early work defying what was considered 'practically impossible' has developed into state-of-the-art practical reality. This paper presents the key hardware, basic principles and key considerations for the practical usage of cryogenic Lift-Out for those new to the field. Detailed protocols and in-depth description of considerations and points for further development are presented. The authors have attempted to formalise everything known about the technique gathered together from their expertise gained in the development of this approach. LAY DESCRIPTION A major challenge in electron microscopy is the production of suitable samples from hydrated biological and soft-matter materials for subnanometre resolution imaging in a cryo-Transmission Electron Microscope (TEM). A well-known solution for room temperature materials is called (in situ) Lift-Out. It uses a fine needle that picks up a tiny section called a lamella. Lamellae are made by a Focused Ion Beam (FIB). In this paper, we seek to set out the beginnings of Lift-Out sample preparation conducted under cryogenic conditions and the development of this approach as applied to frozen, hydrated biological and soft-matter samples. We discuss the required basic hardware and provide a thorough description of developed protocols. We aim at those new to the field of cryo-Lift-Out to fully educate them in the finer points of hardware setup and practical considerations when attempting to perform cryo-Lift-Out and to demonstrate what has been achieved thus far. We also discuss areas of further improvement and talking points for the future direction of this promising sample preparation technique.Periodontitis is one of the most prevalent chronic inflammatory diseases in humans. However, the disease has been hard to study, majorly because it has been difficult to establish a reproducible animal model. Nonetheless, the ligature-induced periodontitis model in rodent has shown some promise. Here we describe a simplified systematic method to analyze periodontal pathogenesis using quantitative polymerase chain reaction, immunohistochemistry, and bone phenotype in ligature-induced periodontitis murine model. We provide detailed experimental methods and also provide notes that will help to carry out the procedure successfully.Chronic periodontitis is the most common periodontitis observed in adults. Recently, its association with systemic diseases such as ischemic heart-brain disease and diabetes has been pointed out. Porphyromonas gingivalis, a major causative bacterium of chronic periodontitis, has properties of adhering to blood vessels and inducing inflammation, and those properties are involved in the induction of vascular inflammation and promotion of atherosclerosis. Therefore, analysis of the interaction of P. gingivalis with vascular endothelial cells will contribute to an understanding of the link between periodontitis and vascular lesions.Porphyromonas gingivalis is a major pathogen responsible for severe and chronic manifestations of periodontal disease, which is one of the most common infectious disorders of humans. Although human gingival epithelium prevents intrusions by periodontal bacteria, P. gingivalis is able to invade gingival epithelial cells. To study the dynamics and the fate of intracellular P. gingivalis, confocal laser scanning microscopy (CLSM) is a method of choice. Information gained with CLSM contains not only the number of P. gingivalis associated with gingival epithelial cells but also the bacterial localization on/inside the host cells, morphological change of host cells, and physical interaction between the bacteria and host organelle. In this chapter, we describe the protocols for microscopy techniques to morphologically study gingival epithelial cells infected by P. gingivalis.The acquired immunodeficiency syndrome (AIDS) pandemic caused by the human immunodeficiency virus (HIV) is a major global health concern affecting 38 million people worldwide. HIV gene expression is the major determinant of the rate of viral replication leading to the progression of AIDS. The persistence of cellular reservoirs of HIV proviruses, despite prolonged treatment with antiretroviral drugs, represents the main obstacle preventing the eradication of HIV. Epigenetic silencing by histone deacetylase (HDAC) contributes to maintaining HIV transcriptional latency. Amprenavir cell line However, the mechanism of the switch from latency to full HIV replication is unknown. HIV infection and antiretroviral treatment or a combination of both contribute to a higher incidence and severity of periodontitis. Periodontopathic bacteria such as Porphyromonas gingivalis and Fusobacterium nucleatum produce high concentrations of butyric acid, which strongly inhibit HDAC, indicating that periodontitis may mediate the reactivation of HIV replication. Here we describe a stepwise protocol for analyzing HIV reactivation by periodontal pathogens. However, the experiments using HIV requires BSL3 containment, making it difficult to handle HIV in dentistry. Therefore, we present an experimental method using cell lines latently infected with HIV.Microbial lipoproteins/lipopeptides are important virulence factors for periodontal diseases. The membrane lipoproteins from Mycoplasma salivarium or Tannerella forsythia can be easily extracted by exploiting a characteristic feature of Triton X-114 its aqueous nature at low temperatures (0-4 °C), which is absent at room temperature (25-37 °C). Transfection of these lipopeptides into macrophages was performed using the protein transfection reagent, PULSin.Aggregatibacter actinomycetemcomitans is frequently isolated from localized aggressive periodontitis and periodontitis associated with systemic diseases. A. actinomycetemcomitans produces a leukotoxin, which induces apoptosis in human leukocytes. The leukotoxin expression is dependent on the upstream sequence, likely including the promoter, of the gene encoding leukotoxin; strains with the truncated/short upstream sequence express more leukotoxin than strains with the general/long upstream. This chapter addresses the determination of the type of the leukotoxin promoter by PCR analysis, and detection of the apoptosis in the coculture of human monocyte cell line (THP-1) with A. actinomycetemcomitans by the DNA ladder formation, membrane perturbation, and lactate dehydrogenase release.Treponema denticola is a potent periodontal pathogen that forms a red complex with Porphyromonas gingivalis and Tannerella forsythia. link2 It has many virulence factors, yet there are only a few reports detailing these factors. Among them, dentilisin is a well-documented surface protease. Dentilisin is reported to be involved in nutrient uptake, bacterial coaggregation, complement activation, evasion of the host immune system, inhibition of the hemostasis system, and cell invasion as a result of its action, in addition to its original proteolysis function. Therefore, characterization of dentilisin, and clarifying the relationship between T. denticola and the onset of periodontal disease will be important to better understanding this disease. In this chapter, we explain the methods for analysis of dentilisin activity and pathogenicity.Butyrate is one of the most harmful metabolic end products found in the oral cavity. Thus, it would be important to characterize the enzymes responsible for production of this metabolite to elucidate the pathogenicity of periodontogenic bacteria. Here, a spectrophotometric assay for butyryl-CoAacetate CoA transferase activity and gas chromatography-mass spectrometry measurement of butyrate and other short chain fatty acids such as acetate, propionate, isobutyrate, and isovalerate are described.Bacteria release spherical nanobodies, known as membrane vesicles (MVs), during various growth phases. MVs have been gaining recognition as structurally stable vehicles in the last two decades because they deliver a wide range of antigens, virulence factors, and immunomodulators to the host. These functions suggest not only the possible contribution of MVs to pathogenicity but also the potential applicability of low-dose MVs for use as vaccines. Here, we describe a series of methods for isolating MVs of Porphyromonas gingivalis, which is an important species among periodontopathic bacteria. The present chapter also introduces a mouse model of intranasal immunization using MVs from P. gingivalis.OmpA-like proteins located in the outer bacterial membrane are potential virulence factors from the major periodontal pathogens Porphyromonas gingivalis and Tannerella forsythia. Our previous studies have shown that OmpA-like proteins are glycosylated by O-linked N-acetylglucosamine (O-GlcNAc) and are strongly reactive to wheat germ agglutinin (WGA) lectin, which shows sugar specificity to GlcNAc. Utilizing this property, we have developed a separation method for OmpA-like proteins by affinity chromatography using WGA lectin-agarose. The purity of enriched native OmpA-like proteins were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Coomassie Brilliant Blue (CBB) staining. link3 More importantly, the purified OmpA-like proteins formed a unique trimeric structure keeping their bioactivity intact. In this chapter, we describe a detailed procedure to separate OmpA-like proteins, which may be used to further progress the biological studies of OmpA-like proteins.The objective of this chapter is to provide a detailed purification protocol for the surface-layer (S-layer) glycoproteins of the periodontal pathogen Tannerella forsythia. The procedure involves detergent based solubilization of the bacterial S-layer followed by cesium chloride gradient centrifugation and gel permeation chromatography. The protocol is suitable for the isolation of S-layer glycoproteins from T. forsythia strains with diverse O-glycan structures, and aid in understanding the biochemical basis and the role of protein O-glycosylation in bacterial pathogenesis.