Freemanrocha8738
To improve the antifouling performance of silicone fouling-release coatings, some fluorosilicone and silicone fouling-release coatings were prepared and cured at room temperature with hydroxyl-terminated fluoropolysiloxane (FPS) or hydroxy-terminated polydimethylsiloxane (PDMS) as a film-forming resin, tetraethyl orthosilicate (TEOS) as a crosslinking agent, and dibutyltin dilaurate (DBTDL) as a catalyst. The chemical structure, surface morphology and roughness, tensile properties, and antifouling properties of the coating were studied by infrared spectroscopy, a laser confocal scanning microscope, contact angle measurement, tensile tests, and marine bacteria and benthic diatom attachment tests. The results showed that the FPS coatings were not only hydrophobic but also oleophobic, and the contact angles of the FPS coatings were larger than those of the PDMS coatings. The surface free energies of the FPS coatings were much lower than those of the PDMS coatings. Generally, the fluorine groups can improve the antifouling performance of the coating. Introducing nonreactive silicone oil into PDMS or FPS coatings can improve the antifouling performance of the coating to a certain extent. The prepared fluorosilicone fouling-release coatings showed good application prospects.Samples of composite materials based on high-performance semicrystalline polyimide R-BAPB (based on the dianhydride R 1,3-bis-(3',4,-dicarboxyphenoxy)benzene and diamine BAPB 4,4'-bis-(4″-aminophenoxy)diphenyl)) filled with carbon nanofibers and micron-sized discrete carbon fibers were obtained by FFF printing for the first time. The viscosity of melts of the composites based on R-BAPB, thermal, mechanical characteristics of the obtained composite samples, their internal structure, and biocompatibility were studied. Simultaneously with FFF printing, samples were obtained by injection molding. The optimal concentrations of carbon fillers in polyimide R-BAPB for their further use in FFF printing were determined. The effect of the incorporation of carbon fillers on the porosity of the printed samples was investigated. It was shown that the incorporation of carbon nanofibers reduces the porosity of the printed samples, which leads to an increase in deformation at break. Modification of polyimide with discrete carbon fibers increases the strength and Young's modulus sufficiently but decreases the deformation at break. The cytotoxicity analysis showed that the obtained composite materials are bioinert.Perfluoropolymer membranes are widely used because of their good environmental adaptability. Herein, the ultrafine fibrous FEP porous membranes were fabricated with electrospinning-sintered technology. The effects of PVA content and sintering temperature on the fabricated membranes' morphologies and properties were investigated. The results indicate that a kind of dimensionally stable network structure was formed in the obtained ultrafine fibrous FEP porous membranes after sintering the nascent ultrafine fibrous FEP/PVA membranes. The optimal sintering conditions were obtained by comparing the membranes' performance in terms of membrane morphology, hydrophobicity, mechanical strength, and porosity. When the sintering temperature was 300 °C for 10 min, the porosity, water contact angle, and liquid entry pressure of the membrane were 62.7%, 124.2° ± 2.1°, and 0.18 MPa, respectively. Moreover, the ultrafine fibrous FEP porous membrane at the optimal sintering conditions was tested in vacuum membrane distillation with a permeate flux of 15.1 L·m-2·h-1 and a salt rejection of 97.99%. read more Consequently, the ultrafine fibrous FEP porous membrane might be applied in the seawater desalination field.In temperature sensitive hydrogels, the swelling degree or light transmittance of the gel itself changes with variations in ambient temperature, prompting its wide application in controlled drug release, tissue engineering, and material separation. Considering the amphiphilic structure of β-cyclodextrin (β-CD), a cellulose-based supramolecular hydrogel with superior temperature sensitivity was synthesized based on a combination of cellulose and β-CD as well as the host-guest interaction between β-CD and polypropylene glycol (PPG). In the one-pot tandem reaction process, chemical grafting of β-CD on cellulose and the inclusion complexation of β-CD with PPG were performed simultaneously in a NaOH/urea/water system. The obtained supramolecular hydrogel had a lower critical solution temperature (LCST) of 34 °C. There existed covalent bonding between the cellulose and β-CD, host-guest complexation between the β-CD and PPG, and hydrogen bonding and hydrophobic interactions between the components in the network structure of the supramolecular hydrogel. The combination of various covalent and non-covalent bonds endowed the resulting supramolecular hydrogel with good internal network structure stability and thermal stability, as well as sensitive temperature responsiveness within a certain range-implying its potential as a smart material in the fields of medicine, biology, and textiles. This work is expected to bring new strategies for the fabrication of cellulose-based thermosensitive materials, benefitting the high-value utilization of cellulose.Shape-memory polymers (SMPs) have gradually emerged in the mechanism and biomedical fields and facilitate the upgrading of industrial mechanisms and the breakthrough of technical bottlenecks. However, most of the SMPs are infeasible in harsh environments, such as aerospace, due to the low glass transition temperature. There are still some works that remain in creating truly portable or non-contacting actuators that can match the performances and functions of traditional metal structures. Polyether-ether-ketone (PEEK) with a high glass transition temperature of 143 °C is endowed with outstanding high-temperature resistance and radiation-resistant properties and shape memory behavior. Thus, we explore the shape-memory properties and actuation performances of high-temperature PEEK in bending behaviors. The shape-recovery ratio, actuation speed and force under different programming conditions and structure parameters are summarized to complete the actuation capacities. Meanwhile, a metallic ball transported by shape-memory PEEK and deployed drag sail with thermo-responsive composite joints were shown to verify the potential in aerospace.This study aims to investigate the two-way shear strength of concrete slabs with FRP reinforcements. Twenty-one strength models were briefly outlined and compared. In addition, information on a total of 248 concrete slabs with FRP reinforcements were collected from 50 different research studies. Moreover, behavior trends and correlations between their strength and various parameters were identified and discussed. Strength models were compared to each other with respect to the experimentally measured strength, which were conducted by comparing overall performance versus selected basic variables. Areas of future research were identified. Concluding remarks were outlined and discussed, which could help further the development of future design codes. The ACI is the least consistent model because it does not include the effects of size, dowel action, and depth-to-control perimeter ratio. While the EE-b is the most consistent model with respect to the size effect, concrete compressive strength, depth to control perimeter ratio, and the shear span-to-depth ratio. This is because of it using experimentally observed behavior as well as being based on mechanical bases.The freshness and safety of fruits and vegetables affect our daily life. Paper products are often used in the packaging and transportation of fruits and vegetables, and these can provide other functions besides packaging after certain modifications and additions. In this study, the AgNPs/1-MCP antibacterial fresh-keeping composite paper was prepared by in-situ loaded silver nanoparticles and spraying 1-MCP solution. Moreover, the prepared paper was used to preserve sweet cherries. It was found that the prepared AgNPs/1-MCP antibacterial fresh-keeping composite paper could effectively inhibit E. coli and S. aureus. When the addition of 1-MCP in the paper was 0.05 g, the fresh-keeping effect on cherries was the best. Under this optimal condition, the weight loss ratio of the cherries was reduced by 1.93%, the firmness was increased by 27.7%, and the soluble solid content was increased by 25%. The preservation time was extended from 4 days to 12 days, three times that of the untreated ones. The prepared fresh-keeping material is environmentally friendly, non-toxic and harmless, simple to prepare and convenient to use, and is expected to become one of the important fresh-keeping methods for fruits.Biopolymers, which are biodegradable and inherently functional, have high potential for specialized applications (e.g., disposable and transient systems and biomedical treatment). For this, it is important to create composite materials with precisely defined chain interactions and tailored properties. This work shows that for a chitosan-gelatin material, both glycerol and isosorbide are effective plasticizers, but isosorbide could additionally disrupt the polyelectrolyte complexation (PEC) between the two biopolymers, which greatly impacts the glass transition temperature (Tg), mechanical properties, and water absorption. While glycerol-plasticized samples without nanofiller or with graphene oxide (GO) showed minimal water uptake, the addition of isosorbide and/or montmorillonite (MMT) made the materials hydrolytically unstable, likely due to disrupted PEC. However, these samples showed an opposite trend in surface hydrophilicity, which means surface chemistry is controlled differently from chain structure. This work highlights different mechanisms that control the different properties of dual-biopolymer systems and provides an updated definition of biopolymer plasticization, and thus could provide important knowledge for the future design of biopolymer composite materials with tailored surface hydrophilicity, overall hygroscopicity, and mechanical properties that meet specific application needs.Sulfur hexafluoride (SF6) plasma at different pressures, powers, and times was used to treat Kraft paper (KP) to enhance its water resistance. The KP was treated with SF6 plasma from 20-300 mTorr of pressure at powers from 25-75 Watts and treatment times from 1-30 min at 13.56 MHz. The prepared papers were characterized by contact angle measurement and water absorption. The selected optimum condition for the plasma-treated KP was 200 mTorr at 50 Watts for 5 min. Advancement with the change in treatment times (3, 5, and 7 min) on the physical and mechanical properties, water resistance, and morphology of KP with SF6 plasma at 200 mTorr and 50 Watts was evaluated. The changes in the chemical compositions of the plasma-treated papers were analyzed with an XPS analysis. The treatment times of 0, 3, 5, and 7 min revealed fluorine/carbon (F/C) atomic concentration percentages at 0.00/72.70, 40.48/40.97, 40.18/37.95, and 45.72/39.48, respectively. The XPS spectra showed three newly raised peaks at 289.7~289.8, 291.5~291.