Freedmanfrom9248

Z Iurium Wiki

An evolutionarily conserved function of glia is to provide metabolic and structural support for neurons. To identify molecules generated by glia and with vital functions for neurons, we used Drosophila melanogaster as a screening tool, and subsequently translated the findings to mice. We found that a cargo receptor operating in the secretory pathway of glia was essential to maintain axonal integrity by regulating iron buffering. Ferritin heavy chain was identified as the critical secretory cargo, required for the protection against iron-mediated ferroptotic axonal damage. In mice, ferritin heavy chain is highly expressed by oligodendrocytes and secreted by employing an unconventional secretion pathway involving extracellular vesicles. Disrupting the release of extracellular vesicles or the expression of ferritin heavy chain in oligodendrocytes causes neuronal loss and oxidative damage in mice. Our data point to a role of oligodendrocytes in providing an antioxidant defense system to support neurons against iron-mediated cytotoxicity.The accurate timing and execution of organelle biogenesis is crucial for cell physiology. Centriole biogenesis is regulated by Polo-like kinase 4 (Plk4) and initiates in S-phase when a daughter centriole grows from the side of a pre-existing mother. Here, we show that a Plk4 oscillation at the base of the growing centriole initiates and times centriole biogenesis to ensure that centrioles grow at the right time and to the right size. The Plk4 oscillation is normally entrained to the cell-cycle oscillator but can run autonomously of it-potentially explaining why centrioles can duplicate independently of cell-cycle progression. Mathematical modeling indicates that the Plk4 oscillation can be generated by a time-delayed negative feedback loop in which Plk4 inactivates the interaction with its centriolar receptor through multiple rounds of phosphorylation. We hypothesize that similar organelle-specific oscillations could regulate the timing and execution of organelle biogenesis more generally.Structural variants contribute substantially to genetic diversity and are important evolutionarily and medically, but they are still understudied. Here we present a comprehensive analysis of structural variation in the Human Genome Diversity panel, a high-coverage dataset of 911 samples from 54 diverse worldwide populations. We identify, in total, 126,018 variants, 78% of which were not identified in previous global sequencing projects. Some reach high frequency and are private to continental groups or even individual populations, including regionally restricted runaway duplications and putatively introgressed variants from archaic hominins. By de novo assembly of 25 genomes using linked-read sequencing, we discover 1,643 breakpoint-resolved unique insertions, in aggregate accounting for 1.9 Mb of sequence absent from the GRCh38 reference. Our results illustrate the limitation of a single human reference and the need for high-quality genomes from diverse populations to fully discover and understand human genetic variation.Introduction Lung cancer leads in mortality among all types of cancer in US and Non-small cell lung cancer (NSCLC) is the major type of lung cancer. Mice models of lung cancer based on subcutaneous or orthotopic inoculation of cancer cell suspension do not adequately mimic the progression of lung cancer in clinic. Methods A549-iRFP cells (human NSCLC adenocarcinoma) were cultured to form multicellular spheroids (MCS), which were then inoculated intrapulmonarily into male athymic nude mice. Ruboxistaurin The xenograft cancer development was monitored by in vivo fluorescent imaging and validated by open-chest anatomy, ex vivo fluorescent imaging, and histological studies. Results The newly developed orthotopic xenograft model of lung cancer simulated all four clinical stages of NSCLC progression over one month Stage 1) localized tumor at the inoculation site, Stage 2) multiple tumor nodules or larger tumor nodule on the same side of the lung, Stage 3) cancer growth on heart surface, and Stage 4) metastatic cancer on both sides of the lung. The model yielded high rates of postoperative survival (100%) and parenchymal tumor establishment (88.9%). The roughness of the inoculated MCS associated negatively with the time needed to develop metastatic cancer (p = .0299). Discussion This new orthotopic xenograft model of NSCLC would facilitate the development of medications to treat lung cancer.Depressive and anxious behaviors are the most common psychiatric symptoms of epilepsy, and may aggravate the epileptic condition and affect the patient's quality of life. Accumulating data obtained from both experimental animal models and patients have convincingly shown a critical role of P2X7 receptor (P2X7R) during depression and anxiety. Our study showed for the first time that the P2X7R is involved in promoting depression- and anxiety-like behaviors in lithium pilocarpine-induced epileptic rats. More importantly, direct anti-depressive and anti-anxiety effects were produced by the P2X7R antagonist Brilliant Blue G (BBG) is in this study, and the effect was similar to that of the classic anti-depressant and anti-anxiety drug fluoxetine. We also found that BBG did not affect the development of spontaneous recurrent seizures (SRS) and had a neuroprotective effect via inhibition of microglial activation after status epilepticus (SE). Thus, our data provide evidence that the P2X7R in activated microglia promotes depression- and anxiety-like behaviors in lithium-pilocarpine induced epileptic rats. Since previous studies have indicated that some anti-depression and anti-anxiety drugs may exacerbate seizures, our data support that the P2X7R is a promising therapeutic target for epilepsy associated with depression and anxiety.BRCA1, BRCA2, CHEK2 and PALB2 genes are associated with hereditary breast and ovarian cancer syndrome. Genetic testing of these genes is of increasing importance to guide therapeutic and management decisions. In this study, we evaluated the performance of a next generation sequencing (NGS) assay for the complete analysis of BRCA1, BRCA2, CHEK2 and PALB2 genes using Agilent's SureMASTR BRCA Screen that enabled the detection of single nucleotide variants (SNVs), small insertions/deletions (indels) and copy number variations (CNVs) in a single-tube PCR based library preparation. The results showed 100% sensitivity and specificity on a set of 52 known samples from de-identified patients and external quality assessment program. A concordance rate of 87.5% was achieved in the comparison of variant classification with the external laboratories. The high accuracy of the assay supports the use of SureMASTR BRCA Screen in clinical diagnostic laboratories (SureMASTR BRCA Screen is for research use only, not for use in diagnostic procedures).

Autoři článku: Freedmanfrom9248 (Hougaard Mcleod)