Frederickjames3994

Z Iurium Wiki

Cadmium (Cd) contamination is the most common and extensive heavy metal pollution in the farmland of China. Phytoremediation is considered as a promising measure for Cd-contaminated soil remediation, but the remediation efficiency still needs to be enhanced. Biochar as an effective amendment medium is widely manufactured and studied for the soil remediation of heavy metals. In this study, a greenhouse pot trial was conducted to investigate the effects of cornstalk biochar on Cd accumulation of Beta vulgaris var. cicla L. (Beta vulgaris) in Cd contaminated soil. The Cd availability, speciation and nutrients in soil, biomass and Cd chemical forms in the Beta vulgaris root were studied to explore the mechanism that how the cornstalk biochar promoted Cd accumulation in Beta vulgaris. Biochar amendment reduced the DTPA-extractable Cd concentration and stimulated the growth of root. Compared to the Beta vulgaris without biochar treatment, the results of 5% biochar amendment showed that the root dry weight of Beta vulgaris increased to 267%, Cd accumulation in Beta vulgaris increased to 206% and the Cd concentration in leaves and roots increased by 36% and 52%, respectively. Additionally, after 5% biochar was applied to soil, the total content of organic matter-bound Cd and residual Cd increased by 38%, while the content of Fe-Mn oxides-bound Cd decreased by 40%. Meanwhile, Cd may mainly bind to the root cell wall and the ratio of NaCl-extracted Cd to HAc-extracted Cd increased to 166% with 5% biochar amendment. According to our study, Cd in soil can be removed by Beta vulgaris and phytoremediation efficiency can be improved with biochar amendment. The combination of phytoremediation and biochar amendment is a promising strategy for the Cd-contaminated soil remediation.Lactofen is a chiral herbicide and widely used against broadleaf weeds in agriculture. As a pesticide, it is directly released to the environment, and easily caused contamination in soil and aquatic ecosystem. The enantioselective degradation of lactofen in the environment has been reported, but the molecular biological mechanism of this phenomenon is still unclear. In this study, strain Edaphocola flava HME-24 could degrade 96.7% of 50 mg L-1 lactofen within 72 h. Lactofen was initially hydrolyzed to desethyl lactofen and subsequently acifluorfen by strain HME-24. A novel gene lanE, involved in lactofen transformation, was obtained from Edaphocola flava HME-24. Gene lanE encoded a protein of 471 amino acids that contained the conserved GXSXG esterase motif and clustered into esterase subfamily V. LanE shared the highest identity with esterase EstD (Q9WYH1) from Thermotoga maritima MSB8 (29.14%). This esterase was also able to transform p-nitrophenyl esters (C4-C8), and the activity decreased when the carbon chain length increased. LanE showed enantioselectivity during the degradation of lactofen, diclofop-methyl, and quizalofop-ethyl, with a higher degradation efficiency of (S)-enantiomers than (R)-enantiomers. The three-dimensional structure of LanE was simulated, and molecular docking revealed that when the (S)-enantiomers of lactofen occupied the active sites, the distance between the ligand molecule and the coordination atom was shorter than that when the (R)-enantiomers occupied the active sites, which facilitated the formation of the transition state complex. The results in this study enhanced our understanding of the preferential catabolism of the (S)-enantiomers of lactofen on the molecular level and could illustrate the reported enantioselective degradation of lactofen in the environment.Trichlorfon is an organophosphate insecticide that is widely used on fish farms to control parasitic infections. It has been detected in freshwater ecosystems as well as in fishery products. There is a growing body of evidence to suggest that certain feed additives may reduce or prevent pesticide-induced toxicity in fish. The aim of the present study was to determine whether acute exposure to trichlorfon would alter bioenergetic homeostasis and alter fatty acid profiles in muscles of silver catfish (Rhamdia quelen). We also sought to determine whether rutin prevents or reduces these effects. Cytosolic and mitochondrial creatine kinase (CK) and activities of complexes II-III and IV in muscle were significantly inhibited by exposure to 11 mg/L trichlorfon for 48 h compared to effects in the unexposed group. Total content of polyunsaturated fatty acids (omega-3 and omega-6) were significantly lower in muscle of silver catfish exposed to 11 mg/L trichlorfon for 48 h than in the unexposed group. Addition of 3 mg rutin/kg feed increased CK activity and prevented inhibition of complex IV activity, as well as preventing all alterations of muscle fatty acid profiles elicited by exposure to trichlorfon. No significant differences were observed between groups with respect to muscle adenylate kinase or pyruvate kinase activities, as well as total content of saturated and monounsaturated fatty acids. Our findings suggest that exposure (48 h) to 11 mg trichlorfon/L water inhibits cytosolic and mitochondrial CK activity in muscle. Trichlorfon also affects activities of complexes II-III and IV in respiratory chain, with important consequences for adenosine triphosphate production. The pesticide alters fatty acid profiles in the fish and endangers human consumers of the product. The most important finding of the present study is that inclusion of rutin improves bioenergetic homeostasis and muscle fatty acid profiles, suggesting that it reduces trichlorfon-induced muscle damage.Carbon black (CB) and heavy metals are the main components of Particulate Matter (PM). Telotristat Etiprate order Although the individual toxicities of CB and heavy metals have been extensively studied, the combined toxicity is much less understood. In this study, we choose the nano carbon black (CBNPs) and Pb2+ to simulate fine particles in the atmosphere and study the combined toxic effect on rat alveolar macrophages. The data showed that CBNPs could adsorb Pb2+ to form CBNPs-Pb2+ complex and displayed an altered physical properties by particle characterization. CBNPs-Pb2+ synergistically induced rat alveolar macrophages apoptosis and blocked autophagy flux compared with CBNPs and Pb2+ individually. Consistent with this, CBNPs-Pb2+ could impair the mitochondrial membrane potential (MMP), activate apoptotic signaling pathways, inhibit lysosomal function.

Autoři článku: Frederickjames3994 (Marcher Broussard)