Frantzenharder7425

Z Iurium Wiki

HFCW achieved the average removal rate of TN at 76.01%, and the average removal rate of TN by VFCW reached 71.69% after the carbon addition. In contrast, dosage of an external carbon source showed limited effect on phosphorus removal. Furthermore, it worked more effectively for performance improvement of HFCW than that of VFCW. ③The analysis of microbial community structure in wetland substrate and plant rhizosphere samples revealed that Proteobacteria, Firmicutes, and Verrucomicrobia were the dominant phylum in two series of wetland samples. For the dominant microbiota at the genus level, there were more significant differences in microbial community structure in wetland substrate samples than that in plant rhizosphere samples. Hydrogenophaga, Erysipelothrix, and Devosia contributed the most to the differences between the microbial communities of HFCW and VFCW. Overall, the species diversity and abundance of microbial samples from VFCW was higher than those from HFCW.Pharmaceuticals and personal care products (PPCPs) adsorption and membrane fouling control were realized by a polyvinylidene fluoride (PVDF) membrane loaded with multifunctional metal-organic frameworks (MOFs) in this study. During adsorption, the multifunctional MOFs UiO-66@Fe3O4@UiO-66 in the mixed-matrix membrane (MMMs) could adsorb two typical PPCPs, salicylic acid (SA), and dimethyl phthalate (DMP), efficiently. In the membrane catalytic regeneration process, Fe3O4 in UiO-66@Fe3O4@UiO-66 could catalyze H2O2 to generate hydroxyl radicals (HO·), coupling MOFs/PVDF adsorption capacity regeneration and membrane cleaning. The results show that 10%MOFs/PVDF exhibits the highest adsorption efficiency for 0.1 mmol·L-1 SA and DMP under neutral conditions, and the removal rate reached 64.2% and 46.1%, respectively. Additionally, the pure water flux and membrane adsorption capacity of 10%MOFs/PVDF were able to recover about 91.8% and 94.2%, respectively, using 5 mmol·L-1 H2O2. read more In this research, the main characteristic of MOFs/PVDF is coupling of the membrane adsorption capacity regeneration and membrane fouling control process. This provides new ideas for the removal of PPCPs and the improvement of membrane anti-fouling performance during the deep purification of secondary effluent.Bi2MoO6/Bi2S3 heterojunctions were synthesized by the solvothermal method. The morphology, chemical composition, and photoelectric properties of the heterojunction materials were characterized by XRD, TEM, UV-Vis, XPS, and I-T. Tetracycline (TC) and tetracycline-copper (TC-Cu) composites were degraded by the as-prepared heterojunctions under visible light. The effects of pH, initial concentration of TC, and molar ratio of TC to Cu2+ on the degradation deficiency of TC were investigated. Additionally, the main active radicals, intermediates, and mechanisms were ascertained by in situ capture experiments and the identification of intermediates. The toxicities of TC and TC-Cu before and after degradation were evaluated by chlorella growth inhibition experiments. The results showed that the prepared Bi2MoO6/Bi2S3 heterojunction was a uniform nanosheet and its band gap was 1.76 eV. Bi2MoO6 and Bi2S3 with a mass ratio of 31 (MS-0.3) exhibited a composite ratio of TC and Cu2+ was 21 and had the best photocatalytic performance. When the concentration of TC was 10 mg·L-1 with neutral solutions, after reacting for 60 min, the degradation rate of TC and mineralization rate of the solution for TC-Cu were 85.63% and 52.94%, respectively. The results of active group capture experiments showed that the main active group of the heterojunction was the·O2- radical in visible light. In addition, the results of growth inhibition experiments showed that the presence of Cu2+ reduces the toxicity of TC photocatalytic degradation products in the TC-Cu complex, and the antibiotics can be effectively removed in the TC-Cu complex by photocatalytic oxidation.To study the effect of biomass particle size on the rate and ability of phosphorus removal from aqueous solution by MgO-loaded Phragmites australis biochar (MBC), MBC was prepared using 0.0-0.5, 1.0-2.0, and 6.0-8.0 mm Phragmites australis particles as the feedstock and MgCl2 as the modification material. The MBC was characterized using FTIR, XRD, and SEM techniques. Kinetic and isotherm experiments of phosphate (PO43--P) adsorption from aqueous solution by the MBC were conducted, and the experimental data were fitted with various kinetic and isotherm models. The results showed that the adsorption rate of PO43--P by the MBC increased with the increase in biomass particle size. The amount of PO43--P adsorbed by the MBC prepared from 0.0-0.5, 1.0-2.0, and 6.0-8.0 mm particles reached 15.4%, 25.8%, and 80.8%, respectively, within 2 h. The biomass particle size did not affect the maximum PO43--P adsorption capacity (249.0-254.7 mg·g-1) of the MBC. MBC prepared from the 6-8 mm particles retained the complete cell wall structure of the Phragmites australis, and a large number of micropores and mesopores were generated during pyrolysis, thereby forming a hierarchical, regular, and well-connected pore structure. MBC prepared from the 0.0-0.5 mm and 1.0-2.0 mm particles had inferior pore structures with inferior pore connectivity, which affected the diffusion rate of PO43- ions inside the MBC and limited the PO43--P adsorption rate. Therefore, when using waste Phragmites australis harvested from a constructed wetland to produce MBC and remove phosphorus from water, the Phragmites australis should be crushed into 6-8 mm particles. Over-crushing deteriorates the pore structure of the produced MBC and reduces the removal rate of phosphorus by the MBC.In recent years, quinolone antibiotics (QNs), which easily bioaccumulate in aquatic organisms, have been widely detected in lake ecosystems, and the bioaccumulation and trophic transfer behavior are obviously spatiotemporally different. In this study, the bioaccumulation and trophic transfer behavior of fourteen QNs in nine dominant fish species were studied, the correlation with environmental factors was analyzed, and the health risk of QNs was evaluated in Baiyangdian Lake. The results showed that the mass concentrations of ∑QNs in water varied from 0.7400 to 1590 ng·L-1. Furthermore, the detected frequencies of flumequine (FLU), oxolinic acid (OXO), and ofloxacin (OFL) were higher, and the average mass concentration of FLU was the highest. The content of ∑QNs in fish ranged from 17.1 to 146 ng·g-1, and the average contents of ciprofloxacin (CIP) and OFL were higher. The bioaccumulation factors (BAF) were in the range of 96.2 (BAFMAR)-489 (BAFCIP) L·kg-1, indicating the bioaccumulation of QNs was low in dominant fish species. The trophic magnification factors (TMF) of five QNs (enrofloxacin (ENR), FLU, marbofloxacin (MAR), norfloxacin (NOR), and OFL) varied from 0.714 (TMFMAR) to 1.33 (TMFENR), indicating ENR exhibited trophic magnification, while FLU, MAR, and ∑QNs exhibited trophic dilution. The results of correlation analysis between environmental parameters and BAF/TMF showed that pH, T, SD, DO, COD, TP, TN, NH4+-N, NO3--N, and PO43--P were significantly related to the bioaccumulation of QNs in fish. The results of human health risk showed that the hazard quotient (HQ) of CIP (0.0040-0.026) was significantly higher than that of other QNs (≤ 0.0050), and the hazard indices (HI) ranged from 0.0010 to 0.035, indicating a high level of health risk. Therefore, to reduce the health risk, the standard and residue limits of QNs should be set in Baiyangdian Lake.As an important primary producer, diatoms play a key role in aquatic ecosystems. However, little is known about the geographical distribution characteristics and driving factors of diatoms in large rivers. In this study, based on a high-throughput sequencing dataset of microeukaryotes, we analyzed the diversities and community compositions of planktonic and sedimentary diatoms in the 1200 km mainstream of Lancang River, a typical large river in southwestern China. The results showed that the diversities of planktonic and sedimentary diatoms in Lancang River were higher in the upstream natural section, and the community compositions of both groups were significantly different among different river sections. Dam construction had a significant effect on the dominant genera. Variance partitioning analysis showed that dispersal limitation was a major driving factor for the distribution pattern of planktonic and sedimentary diatoms, with explanation proportions of 16.7% and 29.8%. Co-occurrence network analyses showed that the interspecific competition relationship and network connectivity of the planktonic diatom network were stronger than the sedimentary ones. The network connectivity of planktonic and sedimentary diatoms in the cascade reservoir section was higher than that of the upstream natural section. This study will help to better understand the biogeographical distribution of diatoms in large rivers and provide useful information for ecological responses of diatoms to dam construction in rivers.Residual levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in karst groundwater in Nanshan Laolongdong were measured using a gas chromatograph equipped with a micro-63Ni electron capture detector to determine the residual characteristics including concentration, distribution, and source of OCPs and PCBs. Results revealed that the total concentration range of OCPs was 34.8-623.2 ng·L-1, and the mean value was 215.6 ng·L-1, among which the total concentration ranges of HCHs, DDTs, and other OCPs were 8.2-23.6, 4.5-363.7, and 22.2-235.9 ng·L-1, respectively, and the mean values were 15.9, 104.5, and 95.3 ng·L-1; the total concentration range of PCBs was 6.0-40.7 ng·L-1, and the mean value was 16.8 ng·L-1. Overall, the pollution of OCPs and PCBs was above average; the results of multiple comparisons revealed that statistically significant differences occurred in the concentration of some OCPs and PCBs. The pollution levels in the water of each sampling point in the study area were quite different; however, the seasonal distribution of OCPs and PCBs was relatively uniform. Source analyses revealed that HCHs' source was the input of lindane in the surrounding environment, DDTs recently originated from illegal use of industrial DDT, other OCPs originated from atmospheric deposition and agricultural input, and PCBs' sources included both historical remains and enterprise production processes. The results of Pearson correlation analyses revealed that some organo-halogen pollutants were homologous or had similar sources and decomposition mechanisms. According to health risk assessment model, drinking water in the study area would not cause obvious harm to human health, but children were more sensitive to pollutants than adults.Organophosphate esters (OPEs) are ubiquitous in the environment and pose potential risks to ecosystems in that they produce cytotoxicity, genetic toxicity, developmental toxicity, neurotoxicity, and the endocrine disrupting effect. This study aimed to investigate the distribution, sources, and ecological risk of thirteen OPEs in industrial wastewater, influents and effluents of wastewater treatment plants, and the surface waters of key areas (Changzhou City) in Taihu Lake. The results showed that ∑OPEs in industrial wastewater ranged from 91.70-840.52 ng·L-1. The profiles varied from different industries; however, tris (1-chloro-2-propyl) phosphate (TCPP), triethyl phosphate (TEP), and tris (2-chloroethyl) phosphate (TCEP) were the dominant compounds. The ∑OPEs from the wastewater treatment plants were relatively higher, ranging from 1859.59-2778.57 ng·L-1. They are rather resistant to traditional wastewater treatment techniques. The removal rate of ∑OPEs, aryl OPEs, and chlorinated OPEs was 14.97%, 97.91%, and 4.

Autoři článku: Frantzenharder7425 (Mcbride Hoff)