Franckchristensen3823

Z Iurium Wiki

223 vs 0.006-0.026 h-1). The sunlight self-purification cycle of BDE-209 and BDE-47 on biomass were 6 and 14 days, respectively, with the corresponding sunlight contribution in the range of 0.12-0.51 ng mW-1. Products analysis by GC-MS and HPLC-MS/MS revealed that the main reactions involved in the photodegradation of BDE-209 and BDE-47 on biomass were debromination, hydroxylation, cyclization, and C-O bond breaking reaction. Especially, it was firstly proposed that hydroxyl H in lignin from biomass participated in the formation of primary products, which were rationalized by density functional theory (DFT) calculations and control experiments.Hg methylation in the oxic water column of marine environments has been linked to the presence of suspended and settling particles known as marine snow, which acts as a micro-niche for MeHg production. While marine snow has been thoroughly studied, its freshwater counterpart, lake snow, received less attention, even though few works have highlighted its ability to be a micro environment for Hg methylation in freshwater systems. Here we present new data of MeHg and THg concentrations in the lake snow of a deep peri-alpine lake (Lake Geneva, Switzerland-France). Particles were sampled from the lake and from its main tributaries using continuous flow filtration and continuous flow centrifugation, respectively. MeHg concentrations ranged from 0.48 ± 0.09 ng/g to 9.61 ± 0.67 ng/g in the lake particles, and from 0.30 ± 0.08 ng/g to 2.41 ± 0.14 ng/g in tributary particles. Our results suggest that lake snow is a likely micro-niche for Hg methylation, like marine snow, and that this methylation takes place inside the particles with a subsequent diffusion to the water column. Moreover, we propose a conceptual model to explain the MeHg behavior related to the lake snow along Lake Geneva water column and a mass balance model to estimate the time required to reach the steady state of MeHg in the water column. Our calculation indicates that the steady-state is reached after 37 days. This result is compatible with particles residence times from the literature on Lake Geneva. These particles forming the lake snow are probably a major entry point into the lake's food chain.A bench-scale two-stage membrane-aerated biofilm reactor (MABR) system was applied to treat steel pickling rinse wastewater with high salinity and refractory organic. The effects of salinity and aeration pressure on the treatment efficiency, extracellular polymeric substances (EPS) characteristics and microbial community structure were studied. The optimal removal efficiencies of COD, NH+ 4-N and TN reached to 62.84%, 99.57% and 51.65%, respectively. Shortcut nitrification was achieved at low aeration, and the salinity less than 4% did not remarkable affect system performance. Colorimetric determination, three-dimensional exaction-emission matrix (3D-EEM) and Fourier transform infrared spectrum (FTIR) were employed to characterize the content and composition of proteins (PN) and polysaccharides (PS) in EPS of the biofilm. The results indicated that PN, not PS, response to changes of environmental conditions played a key role. Moreover, EPS might alleviate intracellular and extracellular osmotic pressure imbalance induced by high salinity, which imparted the biofilm in MABR with prominent salt-tolerant. High-throughput sequencing displayed that nitrifiers (Nitrosomonas, Nitrospira), denitrifiers (Dechloromonas, Hyphomicrobium, Denitromonas, Denitratisoma, Candidatus_Competibacter) and aerobic denitrifiers (Pseudomonas, Thauera) were predominant salt-tolerant bacteria.During myocardial ischemia, timely reperfusion is critical to limit infarct area and the overall loss of cardiac contractile function. New treatment strategies need to be developed for patients who are neither able to receive interventional treatment nor suitable for surgical blood transport reconstruction surgery. Therapeutic angiogenesis is a promising approach that can be used to guide new treatment strategies. The goal of these therapies is to form new blood vessels or promote the maturation of existing vasculature systems, bypassing blocked arteries to maintain organ perfusion, thereby relieving symptoms and preventing the remodeling of bad organs. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), have been attracted much attention for their roles in various physiological and pathological processes. There is growing evidence that ncRNAs, especially circRNAs, play an important role in the regulation of cardiomyopathy angiogenesis due to its diversity of functions. Therefore, this article reviews the role and mechanisms of circRNA in myocardial angiogenesis to better understand the role of circRNA in myocardial angiogenesis, which may provide useful insights and new revelations for the research field of identifying diagnostic markers and therapeutic approaches for the treatment of coronary artery disease.Olfactomedin 4 (OLFM4), a multifunctional matricellular protein, is involved in regulation of angiogenesis, innate immunity, inflammation, tumorigenesis and metastasis formation via modulation of important cellular processes like adhesion, proliferation, differentiation as well as apoptosis. In our previous work we demonstrated the upregulation of OLFM4 during liver regeneration and cutaneous wound healing. Here we studied the outcomes of OLFM4 downregulation in human immortalized keratinocytes - the HaCaT cells. The suppression of OLFM4 inhibited migration but enhanced the proliferation of these cells. By using proteomic, and phosphoproteomic analysis, we found that OLFM4 downregulation induced changes in the levels of 184 proteins and 348 phosphosites. An integrated pathway analysis suggested that the increased phosphorylation of CDK7 at Ser164 and Thr170 may serve as the key event in the activation of CDK2 and consequent activation of cell cycle progression. Furthermore, the decrease in GIT1 and WAVE2 protein levels were connected to the disorganization of the actin cytoskeleton, reduction of lamellipodia formation at the leading edge of HaCaT cells, and decrease in their migration capacity.LIM-homeobox genes play multiple roles in developmental processes, but their roles in gonad development are not completely understood. Herein, we report that Lhx2, Ils2, Lmx1a, and Lmx1b are expressed in a sexually dimorphic manner in mouse, rat, and human gonads during sex determination. Amongst these, Lhx2 has female biased expression in the developing gonads of species with environmental and genetic modes of sex determination. Single-cell RNAseq analysis revealed that Lhx2 is exclusively expressed in the germ cells of the developing mouse ovaries. To elucidate the roles of Lhx2 in the germ cells, we analyzed the phenotypes of Lhx2 knockout XX gonads. While the gonads developed appropriately in Lhx2 knockout mice and the somatic cells were correctly specified in the developing ovaries, transcriptome analysis revealed enrichment of genes in the angiogenesis pathway. There was an elevated expression of several pro-angiogenic factors in the Lhx2 knockout ovaries. The elevated expression of pro-angiogenic factors was associated with an increase in numbers of endothelial cells in the Lhx2-/- ovaries at E13.5. Gonad recombination assays revealed that the increased numbers of endothelial cells in the XX gonads in absence of Lhx2 was due to ectopic migration of endothelial cells in a cell non-autonomous manner. We also found that, there was increased expression of several endothelial cell-enriched male-biased genes in Lhx2 knockout ovaries. Also, in absence of Lhx2, the migrated endothelial cells formed an angiogenic network similar to that of the wild type testis, although the coelomic blood vessel did not form. Together, our results suggest that Lhx2 in the germ cells is required to suppress vascularization in the developing ovary. These results suggest a need to explore the roles of germ cells in the control of vascularization in developing gonads. Preprint version of the article is available on BioRxiv at https//doi.org/10.1101/2022.03.07.483280.

NMS-P715 is a potent inhibitor of monopolar spindle 1 (MPS1) mitotic checkpoint kinase. Overexpression of MPS1 is associated with short survival times in patients with cholangiocarcinoma (CCA). This study investigated the anti-cancer effects of NMS-P715 in human CCA cell lines.

KKU-100 and KKU-213A CCA cell lines were treated with NMS-P715 and cell viability was determined using MTT and colony formation assays. Inhibitory effects of NMS-P715 on cell cycle and apoptosis were evaluated using flow cytometry. Expression of underlying mechanism-related proteins was examined by Western blotting. Mitotic catastrophe was assessed by counting abnormal nuclei. Transwell assays were used to examine cell migration and invasion.

Molecular docking showed that the NMS-P715/MPS1 complex was driven by an induced-fit mechanism. We provide new evidence that NMS-P715 potently inhibited cell proliferation and colony formation in both CCA cell lines. This was accompanied by induction of G2/M arrest and the consequent induction of mitotic catastrophe, a process that occurs during defective mitosis. The recent study showed that NMS-P715 activated caspase-dependent apoptosis and autophagosome formation with an increase of LC3 A/B-II protein expression in CCA cell lines. NMS-P715 also greatly impeded cell migration and invasion in CCA cell lines. The combination of NMS-P715 and gemcitabine or cisplatin showed synergistic effects on CCA cell proliferation.

This study revealed for the first time that NMS-P715 is a promising candidate for combating CCA owing via multiple actions and may be suitable for further development in a clinical study.

This study revealed for the first time that NMS-P715 is a promising candidate for combating CCA owing via multiple actions and may be suitable for further development in a clinical study.Obesity occurs when energy intake overtops energy expenditure. Promoting activation of brown adipose tissue (BAT) and white adipose tissue (WAT) has been proven a promising therapeutic strategy for obesity. CP21 mw Baicalin (BAI) has been shown to be protective for various animal models of cardiovascular diseases, such as pulmonary hypertension, atherosclerosis and myocardial hypertrophy. However, whether BAI could stimulate activation of BAT or browning of WAT remains unknown. Here we show that BAI limits weight gaining, ameliorates glucose tolerance, improves cold tolerance and promotes brown-like tissue formation in diet induced obesity mice model. BAI increases the mitochondrial copy number as judged by mtDNA detection. BAI also increases the expression of UCP1 and other classical browning-specific genes in BAT and WAT and cultured C3H10T1/2 adipocytes through a mechanism involving AMPK/PGC1α pathway. Collectively, our study established a role for BAI in regulating energy metabolism, which will provide new idea and theoretical basis for the treatment of obesity.Aging is a major risk factor for bladder dysfunction. Anti-hypertensive drugs, angiotensin II type 1 receptor blockers (ARBs), are reported to ameliorate lower urinary tract dysfunction in rodent models and humans. We aimed to examine the preventive effect of an ARB, losartan, against bladder dysfunction due to aging-related severe hypertension. Male spontaneously hypertensive rats (SHRs) (36-week-old) were administered losartan (0, 3, or 10 mg/kg, p.o.) for 18 weeks. Age-matched, vehicle-treated Wistar Kyoto rats (WKYs) were used as controls. After the treatments, bladder and renal weight, mean blood pressure, and voiding parameters were measured. Additionally, detrusor thickness and bladder arterial wall thickness were evaluated using hematoxylin and eosin staining. Renal morphology was also assessed using periodic acid-Schiff staining. Compared to WKYs, SHRs demonstrated significantly higher bladder weight/body weight ratio (BBR), renal weight/body weight ratio, mean blood pressure, detrusor thickness, bladder arterial wall thickness, urine output, water intake, post-voiding residual urine volume, bladder capacity, intercontraction interval, and rate of glomerular and tubular injury and a lower urine osmolality.

Autoři článku: Franckchristensen3823 (McCormick Doyle)