Fowlermcgrath6184
9% versus 45.3%,
=0.0002; inferior mitral isthmus line 10.2% versus 7.0%,
=0.01; floor line 46.1% versus 40.6%,
=0.02) than in men. In multivariable analysis, the association between patient sex and complications from ablation was not statistically significant.
In this US wide AF ablation quality improvement registry, women with nonparoxysmal AF were more likely to receive adjunctive lesion sets compared with men. These findings suggest that patient sex may inform ablation strategy in ways that may not be strongly supported by evidence and emphasize the need to clarify optimal ablation strategies by sex.
In this US wide AF ablation quality improvement registry, women with nonparoxysmal AF were more likely to receive adjunctive lesion sets compared with men. These findings suggest that patient sex may inform ablation strategy in ways that may not be strongly supported by evidence and emphasize the need to clarify optimal ablation strategies by sex.The in situ growth of active materials on 3D current collectors (such as Ni foams) presents facile and efficient access to high-performance supercapacitors. However, the low surface area of current collectors limits the mass loading, microstructure, and capacitive performance of active materials thereon. Lithocholic acid FXR agonist Herein, we develop a novel surface modification with hierarchical N-rich carbon nanosheets on Ni foams via a simple sol-gel method. At the same time, its favorable effects on mass loading and utilization are demonstrated using NiCoMn-carbonate hydroxide (NCM) as a model active material. Specifically, the carbon modification greatly boosts the current collector's specific surface area and enables the growth of dense NCM nanoneedles with controllable mass loading ranging from 5.2 to 23.1 mg cm-2. Meanwhile, the correlation between mass loading and utilization is systematically studied, which shows the well-maintained energy storage efficiency due to the conducive surface modification. As a result, excellent performance with the ultrahigh area-specific capacity of 19.36 F cm-2 at 2 mA cm-2 in the three-electrode configuration and remarkable area-specific energy density of 1352 μW h cm-2 in the solid-state asymmetric device can be achieved, demonstrating a prospective pathway toward facile and effective current collector designs for high-energy/power-density supercapacitors.A new deposition mechanism is presented in this study to achieve highly reversible plating and stripping of magnesium (Mg) anodes for Mg-ion batteries. It is known that the reduction of electrolyte anions such as bis(trifluoromethanesulfonyl)imide (TFSI-) causes Mg surface passivation, resulting in poor electrochemical performance for Mg-ion batteries. We reveal that the addition of sodium cations (Na+) in Mg-ion electrolytes can fundamentally alter the interfacial chemistry and structure at the Mg anode surface. The molecular dynamics simulation suggests that Na+ cations contribute to a significant population in the interfacial double layer so that TFSI- anions are excluded from the immediate interface adjacent to the Mg anode. As a result, the TFSI- decomposition is largely suppressed so does the formation of passivation layers at the Mg surface. This mechanism is supported by our electrochemical, microscopic, and spectroscopic analyses. The resultant Mg deposition demonstrates smooth surface morphology and lowered overpotential compared to the pure Mg(TFSI)2 electrolyte.Hydrophobic deep eutectic solvents (DESs) have recently gained much attention as water-immiscible solvents for a wide range of applications. However, very few studies exist in which the hydrophobicity of these DESs is quantified. In this work, the interfacial properties of hydrophobic DESs with water were computed at various temperatures using molecular dynamics simulations. link2 The considered DESs were tetrabutylammonium chloride-decanoic acid (TBAC-dec) with a molar ratio of 12, thymol-decanoic acid (Thy-dec) with a molar ratio of 12, and dl-menthol-decanoic acid (Men-dec) with a molar ratio of 21. The following properties were investigated in detail interfacial tensions, water-in-DES solubilities (and salt-in-water solubilities for TBAC-dec/water), density profiles, and the number densities of hydrogen bonds. Different ionic charge scaling factors were used for TBAC-dec. Thy-dec and Men-dec showed a high level of hydrophobicity with negligible computed water-in-DES solubilities. For charge scaling factors of 0.7 and 1 for the thymol and decanoic acid components of Thy-dec, the computed interfacial tensions of the DESs are in the following order TBAC-dec (ca. 4 mN m-1) less then Thy-dec (20 mN m-1) less then Men-dec (26 mN m-1). The two sets of charge scaling factors for Thy-dec did not lead to different density profiles but resulted in considerable differences in the DES/water interfacial tensions due to different numbers of decanoic acid-water hydrogen bonds at the interfaces. Large peaks were observed for the density profiles of (the hydroxyl oxygen of) decanoic acid at the interfaces of all DES/water mixtures, indicating a preferential alignment of the oxygen atoms of decanoic acid toward the aqueous phase.ConspectusTwo-dimensional (2D) transition-metal dichalcogenides (TMDs) are a class of promising low-dimensional materials with a variety of emergent properties which are attractive for next-generation electronic and optical devices; such properties include tunable band gaps, high electron mobilities, high exciton binding energies, excellent thermal stability and flexibility. During the synthesis process of these materials, especially chemical vapor deposition, defects such as grain boundaries (GBs) inevitably exist. GBs are the interfaces between differently oriented grains and are line defects in 2D crystals. While GBs can degrade the overall quality of 2D materials and adversely affect some of their electrical and mechanical properties, recent results show that GBs give rise to or enhance a wide range of unique electrical, mechanical, and chemical properties of the GBs in 2D TMDs. The effects of GBs on 2D material properties are complex and diverse, providing exciting opportunities to realize new functionallectronic level explanations of these properties to clarify their dependences on GB structures. Applications that extend from these properties, including functional electronics, chemical sensors, and electrocatalysts, are also described. Finally, we provide several perspectives and suggest promising opportunities for exploiting the novel properties of GBs in 2D TMDs. We expect that this Account will further stimulate the fundamental research of GBs and boost the wide application of multifunctional devices.The core structure of phi29 prohead RNA (pRNA) is composed of three major helices organized into three-way junction pRNA (3WJ-pRNA) and has stout structural rigidity along the coaxial helices. Prohead RNAs of the other Bacillus subtilis bacteriophages such as GA1 and SF5 share similar secondary structure and function with phi29; whether these pRNAs have similar mechanical rigidity remains to be elucidated. In this study, we constructed the tertiary structures of GA1 and SF5 3WJ-pRNAs by comparative modeling. Both GA1 and SF5 3WJ-pRNAs adopt a similar structure, in which three helices are organized as the three-way junction and two of the three helices are stacked coaxially. Moreover, detailed structural features of GA1 and SF5 3WJ-pRNAs are also similar to those of phi29 3WJ-pRNA all of the bases of the coaxial helices are paired, and all of the adenines in the junction region are paired, which eliminates the interference of A-minor tertiary interactions. Hence, the coaxial helices tightly join to each other, and the major groove between them is very narrow. Two Mg2+ ions can thus fit into this major groove and form double Mg clamps. A steered molecular dynamics simulation was used to study the mechanical properties of these 3WJ-pRNAs. Both GA1 and SF5 3WJ-pRNAs show strong resistance to applied force in the direction of their coaxial helices. Such mechanical stability can be attributed to the Mg clamps.The association of the electron acceptor 4,4'-amino-bipyridinium (AmV2+) dication and BiI3 in an acidic solution affords three organic-inorganic hybrid materials, (AmV)3(BiI6)2 (1), (AmV)2(Bi4I16) (2), and (AmV)BiI5 (3), whose structures are based on isolated BiI63- and Bi4I164- anion clusters in 1 and 2, respectively, and on a one-dimensional (1D) chain of trans-connected corner-sharing octahedra in 3. In contrast with known methylviologen-based hybrids, these compounds are more soluble in polar solvents, allowing thin film formation by spin-coating. (AmV)BiI5 exhibits a broad absorption band in the visible region leading to an optical bandgap of 1.54 eV and shows a PV effect as demonstrated by a significant open-circuit voltage close to 500 mV. The electronic structure of the three compounds has been investigated using first-principles calculations based on density functional theory (DFT). Unexpectedly, despite the trans-connected corner-shared octahedra, for (AmV)BiI5, the valence state shows no coupling along the wire direction, leading to a high effective mass for holes, while in contrast, the strong coupling between Bi 6px orbitals in the same direction at the conduction band minimum suggests excellent electron transport properties. This contributes to the low current output leading to the low efficiency of perovskite solar cells based on (AmV)BiI5. Further insight is provided for trans- and cis-MI5 1D model structures (M = Bi or Pb) based on DFT investigations.Zeolitic imidazolate frameworks (ZIFs) have been developed quickly and have attracted considerable attention for use in the detection and removal of various pollutants. Understanding the environmental risks of ZIFs is a prerequisite to their safe application by industry and new chemical registration by governments; however, the persistence and recovery of toxicity induced by ZIFs remain largely unclear. This study finds that typical ZIFs (e.g., ZIF-8 and ZIF-67) at a concentration of 0.01-1 mg/L induce significant algal growth inhibition, plasmolysis, membrane permeability, chloroplast damage, and chlorophyll biosynthesis, and the above alterations are recoverable. Unexpectedly, a persistent decrease in reactive oxygen species (ROS) is observed due to the quenching of hydroxyl free radicals. The adverse effects of ZIF-8 are weak and easily alleviated compared with those of ZIF-67. ZIF-8 is internalized mainly by caveolae-mediated endocytosis, while ZIF-67 is internalized mainly by clathrin-mediated endocytosis. Omics studies reveal that the downregulation of mRNA associated with oxidative phosphorylation and the inhibition of chlorophyll and adenosine triphosphate (ATP) synthesis in mitochondria are related to the persistence of phytotoxicity. These findings highlight the phenomena and mechanisms of the persistence and recovery of phytotoxicity, indicating the need to reconsider the environmental risk assessments of ZIFs.ConspectusThe salinity gradient between seawater and river water has been identified as a promising, clean, renewable, and sustainable energy source that can be converted into electricity using ion-selective membranes in a reverse electrodialysis (RED) configuration. However, the major hindrance to current salinity gradient power (SGP) conversion is its poor energy efficiency due to the use of low-performance membrane processes, which affords power for neither miniaturized devices nor industrial-level applications. Nanofluidics, which combines strong confinement and surface charge effects at the nanoscale, contributes to novel transport properties, including excellent ion selectivity and high ion throughput; thus, nanofluidics may lead to technological breakthroughs and act as an emerging platform for harnessing SGP. Recently, two-dimensional (2D) materials have provided impressive energy extraction performance and further insight into fundamental transport mechanisms and theoretical feasibility. link3 To reach the commercialization benchmark and real-world applications, an array of nanopores and channels that can be scaled up to industrial sizes is in high demand; additionally, it remains challenging to develop macroscale nanofluidic membranes that meet the "selectivity versus throughput" dual requirement.