Forsythstentoft4799
5 concentrations in cars by 35 %-57 %. Cyclists inhaled the highest doses (539.8 ± 313.2 and 134.8 ± 71.3 μg/h under haze and non-haze conditions, respectively), whereas car drivers inhaled the lowest doses (28.8 ± 21.2 and 3.7 ± 2.6 μg/h under haze and non-haze conditions, respectively). Individual exposure to PM2.5 during commuting varied with the modes; the discrepancy between the latter depended largely on the ambient concentration. Our findings provided evidence that traffic-related air pollution contributed to daily pollutant exposure and highlighted the importance of taking personal protective measures while commuting, particularly during haze.
Atractylodis rhizoma, an aromatic herb for resolving dampness, is used to treat Kidney-related edema in traditional Chinese medicine for thousands years. This herb possesses antioxidant effect. However, it is not yet clear how Atractylodis rhizoma prevents glomerular injury through its anti-oxidation.
Based the analysis of Atractylodis rhizoma water extract (ARE) components and network pharmacology, this study was to explore whether ARE prevented glomerular injury via its anti-oxidation to inhibit oxidative stress-driven transient receptor potential channel 6 (TRPC6) and its downstream molecule calcium/calmodulin-dependent protein kinase IV (CaMK4) signaling.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze ARE components. Network pharmacology analysis was preliminarily performed. Male Sprague-Dawley rats were given 10% fructose drinking water (100mL/d) for 16 weeks. ARE at 720 and 1090mg/kg was orally administered to rats for the last 8 weeks. Hydrogen peroxide (H
O
) andephrin, as well as CD2AP and α-Actinin-4, being consistent with its reduction of urine albumin-to-creatinine ratio and improvement of glomerular structure injury in this animal model.
These results suggest that ARE may prevent glomerular injury in fructose-fed rats possibly by reducing oxidative stress to inhibit TRPC6/p-CaMK4 signaling and up-regulate synaptopodin expression. Therefore, ARE may be a promising drug for treating high fructose-induced glomerular injury in clinic.
These results suggest that ARE may prevent glomerular injury in fructose-fed rats possibly by reducing oxidative stress to inhibit TRPC6/p-CaMK4 signaling and up-regulate synaptopodin expression. Therefore, ARE may be a promising drug for treating high fructose-induced glomerular injury in clinic.The highly sensitive detection of serum thyroglobulin (Tg) is essential in the post-treatment follow-up of patients with differentiated thyroid cancer undergoing total or partial thyroidectomy and radioactive iodine ablation and requires sensitive, accurate and stable methods. This work proposes an electrochemical immunosensor for the detection of serum Tg antigen, making use of innovative nanocomposites including polyvinylidene fluoride (PVDF) microparticles coated with streptavidin (MP) and gold nanoparticles (AuNPs). The functionalized polymer matrices were characterized by UV-Vis, FTIR, XPS, SEM, dynamic light scattering, and free surface energy. Sodiumacrylate Immobilization of biotin-labeled anti-thyroglobulin monoclonal antibodies was achieved by binding these to the polymer nanocomposite via streptavidin proteins. The analytical response was measured in quintuplicate and had a linear profile from 2.0 to 10.0 ng/mL Tg, with r2 of 0.985. The limits of detection and quantification were excellent, equal to 0.015 and 0.047 ng/mL, respectively. In addition, the recovery factor was equal to 95.4% (1.0 ng/mL Tg). Overall, the innovative polymer-based nanocomposite used herein enabled the production of an electrochemical-based immunosensor with excellent sensitivity, selectivity, and reproducibility. It evidenced the remarkable potential of determining low levels of Tg in in vitro assays, thereby suggesting that it may be considered for the analyzes of serum patients.
Timely recognition and treatment of first-episode psychosis (FEP) is paramount. Studies suggest a significant relationship between longer duration of untreated psychosis and poorer functional outcomes. Limited data exist that characterize how treatment for FEP is initiated by consultation-liaison psychiatric services. We conducted a systematic review of FEP treatment by a consultation-liaison service at a large academic medical tertiary care. Approach to care was reviewed including recommendations for clinical assessment and management.
Psychiatric consultations performed at a tertiary academic center were reviewed to identify potential FEP cases during a 12-month period. Patients of ages 15-49 years, for whom the diagnostic assessment was concerning for possible FEP, were included. Demographic features and management were summarized.
A total of 3365 new psychiatric consults were conducted during our study period. Of these, 28 were identified as having symptoms consistent with possible FEP (0.83% of total sample). However, only 12% were referred to coordinated specialty care for psychosis after discharge from an inpatient medical or psychiatric hospital.
The results of our systemic chart review indicate that workup, management, and disposition recommendations for FEP patients seen by consultation-liaison services are variable, suggesting a need for a standardized, evidence-based approach in the medical setting.
The results of our systemic chart review indicate that workup, management, and disposition recommendations for FEP patients seen by consultation-liaison services are variable, suggesting a need for a standardized, evidence-based approach in the medical setting.The field of nuclear imaging and therapy is rapidly progressing with the development of targeted radiopharmaceuticals that show rapid targeting and rapid clearance with minimal background. Unfortunately, they are often reabsorbed in the kidneys, leading to possible nephrotoxicity, limiting the therapeutic dose, and/or reducing imaging quality. The blocking of endocytic receptors has been extensively used as a strategy to reduce kidney radiation. Alternatively, the physicochemical properties of radiotracers can be modulated to either prevent their reuptake or promote the excretion of radiometabolites. Other interesting strategies focus on the insertion of a cleavable linker between the radiolabel and the targeting moiety or pretargeting approaches in which the targeting moiety and radiolabel are administered separately. In the context of this review, we will discuss the latest advances and insights on strategies used to reduce renal retention of low- to moderate-molecular-weight radiopharmaceuticals.Cholesterol is a known precursor of arthropod molecules such as the hormone 20-hydroxyecdysone and the antimicrobial boophiline, a component of tick egg wax coat. Because the cholesterol biosynthetic pathway is absent in ticks, it is necessarily obtained from the blood meal, in a still poorly understood process. In contrast, dietary cholesterol absorption is better studied in insects, and many proteins are involved in its metabolism, including Niemann-Pick C (NPC) transporter and acyl-CoAcholesterol acyltransferase (ACAT), as well as enzymes to convert between free cholesterol and esterified cholesterol. The present work addresses the hypothesis that tick viability can be impaired by interfering with cholesterol metabolism, proposing this route as a target for novel tick control methods. Two drugs, ezetimibe (NPC inhibitor) and avasimibe (ACAT inhibitor) were added to calf blood and used to artificially feed Rhipicephalus microplus females. Results show that, after ingesting avasimibe, tick reproductive ability and egg development are impaired. Also, eggs laid by females fed with avasimibe did not hatch and were susceptible to Pseudomonas aeruginosa adhesion and biofilm formation in their surfaces. The immunoprotective potential of ACAT against ticks was also accessed using two selected ACAT peptides. Antibodies against these peptides were used to artificially feed female ticks, but no deleterious effects were observed. Taken together, data presented here support the hypothesis that enzymes and other proteins involved in cholesterol metabolism are suitable as targets for tick control methods.Tick-borne diseases in the United States, including ehrlichiosis, represent a growing public health problem. The purpose of this study was to examine the contemporary epidemiology of human ehrlichiosis in Texas by analyzing cases reported to the Texas Department of State Health Services. In Texas, 101 cases of ehrlichiosis were reported during 2008-2017. We observed geographic grouping of cases as well as an increasing trend of reported cases occurring annually from 2009 to 2017. Notably, 27 cases occurred in 2008 in south Texas with unique patient characteristics in that they were younger, less likely to be hospitalized, and presented with disease earlier in the year than typically seen. Our findings highlight the importance of disease awareness and prevention of tick bites as well as further investigation into transmission risk and future disease patterns.Repair of DNA double-strand breaks (DSBs) and its regulation are tightly integrated inside cells. Homologous recombination, nonhomologous end joining and microhomology mediated end joining are three major DSB repair pathways in mammalian cells. Targeting proteins associated with these repair pathways using small molecule inhibitors can prove effective in tumors, especially those with deregulated repair. Sensitization of cancer to current age therapy including radio and chemotherapy, using small molecule inhibitors is promising and warrant further development. Although several are under clinical trial, till date no repair inhibitor is approved for commercial use in cancer patients, with the exception of PARP inhibitors targeting single-strand break repair. Based on molecular profiling of repair proteins, better prognostic and therapeutic output can be achieved in patients. In the present review, we highlight the different mechanisms of DSB repair, chromatin dynamics to provide repair accessibility and modulation of inhibitors in association with molecular profiling and current gold standard treatment modalities for cancer.Chikungunya virus (CHIKV) is known to have a wide range of tropism in human cell types throughout infection, including keratinocytes, fibroblasts, endothelial cells, monocytes, and macrophages. We reported that human monocytes-derived macrophages (MDMs) are permissive to CHIKV infection in vitro. We found that the peak of CHIKV replication was at 24 hpi; however, at 48 hpi, a significant reduction in viral titer was observed that correlated with high expression levels of genes encoding antiviral proteins (AVPs) in an IFN-independent manner. To explore the molecular mechanisms involved in the induction of antiviral response in CHIKV-infected MDMs, we performed transcriptomic analysis by RNA-sequencing. Differential expression of genes at 24 hpi showed that CHIKV infection abrogated the expression of all types of IFNs in MDMs. However, we observed that CHIKV-infected MDMs activated the JAK-STAT signaling and induced a robust antiviral response associated with control of CHIKV replication. We identified that the IL27 pathway is activated in CHIKV-infected MDMs and that kinetics of IL27p28 mRNA expression and IL27 protein production correlated with the expression of AVPs in CHIKV-infected MDMs.