Foldagersteensen5235

Z Iurium Wiki

Infiltration of tumor-promoting immune cells is a strong driver of tumor progression. Especially the accumulation of macrophages in the tumor microenvironment is known to facilitate tumor growth and to correlate with poor prognosis in many tumor types. TAp73, a member of the p53/p63/p73 family, acts as a tumor suppressor and has been shown to suppress tumor angiogenesis. However, what role TAp73 has in regulating immune cell infiltration is unknown. Here, we report that low levels of TAp73 correlate with an increased NF-κB-regulated inflammatory signature in breast cancer. Furthermore, we show that loss of TAp73 results in NF-κB hyperactivation and secretion of Ccl2, a known NF-κB target and chemoattractant for monocytes and macrophages. Importantly, TAp73-deficient tumors display an increased accumulation of protumoral macrophages that express the mannose receptor (CD206) and scavenger receptor A (CD204) compared to controls. The relevance of TAp73 expression in human breast carcinoma was further accentuated by revealing that TAp73 expression correlates negatively with the accumulation of protumoral CD163+ macrophages in breast cancer patient samples. Taken together, our findings suggest that TAp73 regulates macrophage accumulation and phenotype in breast cancer through inhibition of the NF-κB pathway.Locally adapted temperate tree populations exhibit genetic trade-offs among climate-related traits that can be exacerbated by selective breeding and are challenging to manage under climate change. To inform climatically adaptive forest management, we investigated the genetic architecture and impacts of selective breeding on four climate-related traits in 105 natural and 20 selectively bred lodgepole pine populations from western Canada. Growth, cold injury, growth initiation, and growth cessation phenotypes were tested for associations with 18,600 single-nucleotide polymorphisms (SNPs) in natural populations to identify "positive effect alleles" (PEAs). The effects of artificial selection for faster growth on the frequency of PEAs associated with each trait were quantified in breeding populations from different climates. Substantial shifts in PEA proportions and frequencies were observed across many loci after two generations of selective breeding for height, and responses of phenology-associated PEAs differed strongly among climatic regions. Extensive genetic overlap was evident among traits. Alleles most strongly associated with greater height were often associated with greater cold injury and delayed phenology, although it is unclear whether potential trade-offs arose directly from pleiotropy or indirectly via genetic linkage. Modest variation in multilocus PEA frequencies among populations was associated with large phenotypic differences and strong climatic gradients, providing support for assisted gene flow polices. Relationships among genotypes, phenotypes, and climate in natural populations were maintained or strengthened by selective breeding. However, future adaptive phenotypes and assisted gene flow may be compromised if selective breeding further increases the PEA frequencies of SNPs involved in adaptive trade-offs among climate-related traits.Invasive trophoblast cells are critical to spiral artery remodeling in hemochorial placentation. Insufficient trophoblast cell invasion and vascular remodeling can lead to pregnancy disorders including preeclampsia, preterm birth, and intrauterine growth restriction. Previous studies in mice identified achaete-scute homolog 2 (ASCL2) as essential to extraembryonic development. We hypothesized that ASCL2 is a critical and conserved regulator of invasive trophoblast cell lineage development. In contrast to the mouse, the rat possesses deep intrauterine trophoblast cell invasion and spiral artery remodeling similar to human placentation. In this study, we investigated invasive/extravillous trophoblast (EVT) cell differentiation using human trophoblast stem (TS) cells and a loss-of-function mutant Ascl2 rat model. ASCL2 transcripts are expressed in the EVT column and junctional zone, which represent tissue sources of invasive trophoblast progenitor cells within human and rat placentation sites, respectively. Differentiation of human TS cells into EVT cells resulted in significant up-regulation of ASCL2 and several other transcripts indicative of EVT cell differentiation. 740 Y-P Disruption of ASCL2 impaired EVT cell differentiation, as indicated by cell morphology and transcript profiles. RNA sequencing analysis of ASCL2-deficient trophoblast cells identified both down-regulation of EVT cell-associated transcripts and up-regulation of syncytiotrophoblast-associated transcripts, indicative of dual activating and repressing functions. ASCL2 deficiency in the rat impacted placental morphogenesis, resulting in junctional zone dysgenesis and failed intrauterine trophoblast cell invasion. ASCL2 acts as a critical and conserved regulator of invasive trophoblast cell lineage development and a modulator of the syncytiotrophoblast lineage.Agri-environmental schemes (AES) aim to restore biodiversity and biodiversity-mediated ecosystem services in landscapes impoverished by modern agriculture. However, a systematic, empirical evaluation of different AES types across multiple taxa and functional groups is missing. Within one orthogonal design, we studied sown flowering AES types with different temporal continuity, size, and landscape context and used calcareous grasslands as seminatural reference habitat. We measured species richness of 12 taxonomic groups (vascular plants, cicadas, orthopterans, bees, butterflies, moths, hoverflies, flower visiting beetles, parasitoid wasps, carabid beetles, staphylinid beetles, and birds) representing 5 trophic levels. A total of 54,955 specimens were identified using traditional taxonomic methods, and bulk arthropod samples were identified through DNA metabarcoding, resulting in a total of 1,077 and 2,110 taxa, respectively. Species richness of most taxonomic groups, as well as multidiversity and richness of pollinators, increased with temporal continuity of AES types. Some groups responded to size and landscape context, but multidiversity and richness of pollinators and natural enemies were not affected. AES flowering fields supported different species assemblages than calcareous grasslands, but assemblages became more similar to those in seminatural grasslands with increasing temporal continuity. Our results indicate that AES flowering fields and seminatural grasslands function synergistically. Flowering fields support biodiversity even when they are relatively small and in landscapes with few remaining seminatural habitats. We therefore recommend a network of smaller, temporally continuous AES flowering fields of different ages, combined with permanent seminatural grasslands, to maximize benefits for biodiversity conservation and ecosystem service delivery in agricultural landscapes.

Autoři článku: Foldagersteensen5235 (Mckenzie Balslev)