Fogedcooley2474
Recently, researchers have shown an increased interest in ultrasound imaging methods alternate to conventional focused beamforming (CFB). One such approach is based on the synthetic aperture (SA) scheme; more popular are the ones based on synthetic transmit aperture (STA) schemes with a single-element transmit or multielement STA (MSTA). However, one of the main challenges in translating such methods to low-cost ultrasound systems is the tradeoffs among image quality, frame rate, and complexity of the system. These schemes use all the transducer elements during receive, which dictates a corresponding number of parallel receive channels, thus increasing the complexity of the system. A considerable amount of literature has been published on compressed sensing (CS) for SA imaging. Such studies are aimed at reducing the number of transmissions in SA but still recover images of acceptable quality at high frame rate and fail to address the complexity due to full-aperture receive. In this work, we adopt a CS framework to MSTA, with a motivation to reduce the number of receive elements and data. The CS recovery performance was assessed for the simulation data, tissue-mimicking phantom data, and an example in vivo biceps data. It was found that in spite of using 50% receive elements and overall using only 12.5% of the data, the images recovered using CS were comparable to those of reference full-aperture case in terms of estimated lateral resolution, contrast-to-noise ratio, and structural similarity indices. Thus, the proposed CS framework provides some fresh insights into translating the MSTA imaging method to affordable ultrasound scanners.New ultrasound-mediated drug delivery systems, such as acoustic cluster therapy or combined imaging and therapy systems, require transducers that can operate beyond the bandwidth limitation (~100%) of conventional piezoceramic transducers. In this article, a dual-frequency coupled resonator transducer (CRT) comprised of a polymeric coupling layer with a low acoustic impedance (2-5 MRayl) sandwiched between two piezoceramic layers is investigated. Depending on the electrical configuration, the CRT exhibits two usable frequency bands. The resonance frequency of the high-frequency (HF) band can be tailored to be ~3-5 times higher than that of the low-frequency (LF) band using the stiffness in the coupling layer. The CRT's LF band was analyzed analytically, and we obtained the closed-form expressions for the LF resonance frequency. A dual-frequency CRT was designed, manufactured, and characterized acoustically, and comparisons with theory showed good agreement. The HF band exhibited a center frequency of 2.5 MHz with a -3-dB bandwidth of 70% and is suited to manipulate microbubbles or for diagnostic imaging applications. The LF band exhibited a center frequency of 0.5 MHz with a -3-dB bandwidth of 13% and is suited to induce biological effects in tissue, therein manipulation of microbubbles.This technical review presents the state of the art in low-temperature chemical solution deposition (CSD) processing of ferroelectric oxide thin films. To achieve the integration of multifunctional crystalline oxides with flexible and semiconductor devices is, today, crucial to meet the demands of coming electronic devices. Hence, amorphous metal-oxide-semiconductors have been recently introduced in thin-film electronics. selleck chemical However, their benefits are limited compared with those of ferroelectric oxides, in which intrinsic multifunctionality would make possible multiple operations in the device. However, ferroelectricity is linked to a noncentrosymmetric crystal structure that is achieved, in general, at high temperatures, over 500 °C. These temperatures exceed the thermal stability of flexible polymer substrates and are not compatible with those permitted in the current fabrication routines of Si-based devices. In addition, the manufacturing of flexible electronic devices not only calls for low-temperature fabrication processes but also for deposition techniques that scale easily to the large areas required in flexible devices. In this regard, CSD processes are the best positioned today to integrate metal oxide thin films with flexible substrates as a large-area, low-cost, high-throughput fabrication technique. Here, we review the progress made in the last years in fabricating at low-temperature crystalline ferroelectric oxide thin films via CSD methods, highlighting the recent work of our group in the preparation of ferroelectric oxide thin films on flexible polyimide substrates.Electrocardiogram (ECG) is often used together with a spectral Doppler ultrasound to separate heart cycles by determining the end-diastole locations. However, the ECG signal is not always recorded. In such cases, the cardiac cycles can be estimated manually from the ultrasound data retrospectively. We present a deep learning-based method for automatic detection of the end-diastoles in spectral Doppler spectrograms. The method uses a combination of a convolutional neural network (CNN) for extracting features and a recurrent neural network (RNN) for modeling temporal relations. In echocardiography, there are three Doppler spectrogram modalities, continuous wave, pulsed wave, and tissue velocity Doppler. Both the training and test data sets include all three modalities. The model was tested on 643 spectrograms coming from different hospitals than in the training data set. For the purposes described in this work, a valid end-diastole detection is defined as a prediction being closer than 60 ms to the reference value. We will refer to these as true detections. Similarly, a prediction farther away is defined as nonvalid or false detections. The method automatically rejects spectrograms where the detection of an end-diastole has low confidence. When setting the algorithm to reject 1.9%, the method achieved 97.7% true detections with a mean error of 14 ms and had 2.5% false detections on the remaining spectrograms.Superparamagnetic iron oxide nanoparticles (SPIONs) have a high potential for use in clinical diagnostic and therapeutic applications. In vivo distribution of SPIONs can be imaged with the Magnetic Particle Imaging (MPI) method, which uses an inhomogeneous magnetic field with a field free region (FFR). The spatial distribution of the SPIONs are obtained by scanning the FFR inside the field of view (FOV) and sensing SPION related magnetic field disturbance. MPI magnets can be configured to generate a field free point (FFP), or a field free line (FFL) to scan the FOV. FFL scanners provide more sensitivity, and are also more suitable for scanning large regions compared to FFP scanners. Interventional procedures will benefit greatly from FFL based open magnet configurations. Here, we present the first open-sided MPI system that can electronically scan the FOV with an FFL to generate tomographic MPI images. Magnetic field measurements show that FFL can be rotated electronically in the horizontal plane and translated in three dimensions to generate 3D MPI images.