Fogantonsen9926

Z Iurium Wiki

Quercetin Takes away Neuropathic Pain in the Rat CCI Model by Mediating AMPK/MAPK Process.

The results of the high-fat/high-carbohydrate dinner upon leukocyte numbers in adults together with continual vertebrae injury.

Fluorescent in situ hybridization (FISH) on environmental samples has become a standard technique to identify and enumerate microbial populations. However, visualization and quantification of cells in environmental samples with complex matrices is often challenging to impossible, and downstream protocols might also require the absence of organic and inorganic particles for analysis. Therefore, quite often microbial cells have to be detached and extracted from the sample matrix prior to use in FISH. Here, details are given for a routine protocol to extract intact microbial cells from environmental samples using density gradient centrifugation. click here This protocol is suitable and adaptable for a wide range of environmental samples.Foodborne diseases are a major global public health concern. The gold standard detection techniques, namely culture plating techniques, are nowadays considered inadequate for the modern food industry mainly due to the time requirements of this sector. link= click here As such, the adoption of faster detection methods to be routinely used in screening the protocols of foodborne pathogens is required. Fluorescence in situ Hybridization (FISH) methods have been described as a valid alternative to standard plating techniques and are compatible with the requirements of the food industry.Here, we give an overview of the methodological aspects to consider regarding sample preparation and sample analysis for pathogen detection in food matrices by FISH methodologies.Flow-Fluorescence in situ hybridization (Flow-FISH) enables multiparametric high-throughput detection of target nucleic acid sequences at the single cell-level, allowing an accurate quantification of different cell populations by using a combination of flow cytometry and fluorescent in situ hybridization (FISH). In this chapter, a flow-FISH protocol is described with labeled nucleic acid mimics (NAMs) (e.g. LNA/2'OMe and PNA) acting as the reporter molecules. This protocol allows for the specific detection of bacterial cells. Hence, this protocol can be carried out with minor adjustments, in order to simultaneously detect different species of bacteria in different types of clinical, food, or environmental samples.Suitable molecular methods for a faster microbial identification in food and clinical samples have been explored and optimized during the last decades. However, most molecular methods still rely on time-consuming enrichment steps prior to detection, so that the microbial load can be increased and reach the detection limit of the techniques.In this chapter, we describe an integrated methodology that combines a microfluidic (lab-on-a-chip) platform, designed to concentrate cell suspensions and speed up the identification process in Saccharomyces cerevisiae , and a peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) protocol optimized and adapted to microfluidics. Microfluidic devices with different geometries were designed, based on computational fluid dynamics simulations, and subsequently fabricated in polydimethylsiloxane by soft lithography. The microfluidic designs and PNA-FISH procedure described here are easily adaptable for the detection of other microorganisms of similar size.A method for measuring mRNA copies in intact bacterial cells by fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) is presented. click here Unlike conventional single-molecule FISH, where the presence of a transcript is determined by fluorescence intensity, fliFISH relies on On-Off duty cycles of photo-switching dyes to set a predetermined threshold for distinguishing true signals from background noise. The method provides a quantitative approach for detecting and counting true mRNA copies and rejecting false signals with high accuracy.Microautoradiography (MAR) is a technique by which assimilated radioactive tracers incorporated into the biomass can be detected by a film emulsion. This allows for the testing of cellular preferences in electron donors and acceptors of individual cells in complex microbial assemblages, as well as the ability to take up substrates under diverse environmental exposures.Combination with staining techniques such as fluorescence in situ hybridization (FISH) can be used to identify the involved cells. Here, the practical aspects of a combined microautoradiography and fluorescence in situ hybridization (MAR-FISH) approach are described.Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) is an imaging method used to identify microorganisms in environmental samples based on their phylogeny. CARD-FISH can be combined with nano-scale secondary ion mass spectrometry (nanoSIMS) to directly link the cell identity to their activity, measured as the incorporation of stable isotopes into hybridized cells after stable isotope probing. In environmental microbiology, a combination of these methods has been used to determine the identity and growth of uncultured microorganisms, and to explore the factors controlling their activity. Additionally, FISH-nanoSIMS has been widely used to directly visualize microbial interactions in situ. link2 Here, we describe a step-by-step protocol for a combination of CARD-FISH, laser marking, and nanoSIMS analysis on samples from aquatic environments.Direct-geneFISH is a Fluorescence In Situ Hybridization (FISH) method that directly links gene presence, and thus potential metabolic capabilities, to cell identity. The method uses rRNA-targeting oligonucleotide probes to identify cells and dsDNA polynucleotide probes carrying multiple molecules of the same fluorochrome to detect genes. link2 In addition, direct-geneFISH allows quantification of the cell fraction carrying the targeted gene and the number of target genes per cell. It can be applied to laboratory cultures, for example, enrichments and phage infections, and to environmental samples. This book chapter describes the main steps of the direct-geneFISH protocol probe design and synthesis, the "core" direct-geneFISH protocol and lastly, microscopy and data analysis.The possibility of visualizing bacteriophage-host interactions through fluorescence in situ hybridization (FISH)-derived methods is gaining relevance in the last few years. These methods allow the possibility of discriminating between phage-infected and noninfected cells and the assessment of the different infection stages at the single cell level. In opposition to bacterial cells, the detection of phages is more challenging due to the low number of nucleic acid copies. However, by using a conserved region of the phage genome that is highly expressed during transcription, a FISH signal targeting phage DNA copies and mRNA transcripts can be easily visible inside the bacterial host cells.In this book chapter, we will cover both the design of locked nucleic acid (LNA) probes for phages and a FISH method for the detection of phages inside bacterial cells.In this chapter we describe the use of fluorescent quantum dots (QDs) as labels for microbial mRNA transcripts using fluorescence in situ hybridization (FISH). Unlike organic dyes, which are the standard labels in modern FISH methods, QDs provide fluorescence signals that are much brighter and resistant to photobleaching, with an expanded spectral range for multiplexing. We describe the preparation of QDs with compact sizes necessary for accurate labeling, their application for analyzing lacZ transcripts in Escherichia coli cells using FISH, and an assessment of signal stability. We further discuss differences between methods for mammalian cells and bacteria, for which individual nucleic acids cannot be discretely counted due to the small cell size and the optical diffraction limit.CARD-FISH technique allows us to increase microbial cell detection compared to traditional FISH assays. Specific nonfluorescent oligonucleotide probes targeting 16S rRNA genes are employed and are chemically activated by the binding of tyramide molecules, with the latter able to generate a cascade of fluorescence signals, improving sensitivity and reducing background noise. link3 The technique has been successfully applied for the detection of microorganisms in different environmental matrices and under different growth conditions (including those where cells are characterized by low physiological activity and low ribosome content). This chapter presents a straightforward procedure to execute CARD-FISH analysis, from sample preparation and fixation, to microscopic visualization, along with relevant technical notes.High-resolution, spatial characterization of microbial communities is critical for the accurate understanding of microbe-microbe and microbe-plant interactions in leaf surfaces (phyllosphere). However, leaves are specially challenging surfaces for imaging methods due to their high autofluorescence. In this chapter we describe the Leaf-FISH method. Leaf-FISH is a fluorescence in situ hybridization (FISH) method specially adapted to the requirements of plant tissues. Leaf-FISH uses a combination of leaf pretreatments coupled with spectral imaging confocal microscopy and image post-processing to visualize bacterial taxa on a structural-informed context recreated from the residual background autofluorescence of the tissues. Leaf-FISH is suitable for simultaneous identification of multiple bacterial taxa using multiple taxon-specific fluorescently labeled oligonucleotide probes (combinatorial labeling).Biofilms are often composed of different bacterial and fungal species/strains, which form complex structures based on social interactions with each other. Fluorescence in situ hybridization (FISH) can help us identify the different species/strains present within a biofilm , and when coupled with confocal scanning laser microscopy (CSLM), it enables the visualization of the three-dimensional (3D) structure of the biofilm and the spatial arrangement of each individual species/strain within it. In this chapter, we describe the protocol for characterizing multistrain or multispecies biofilm formation using NAM-FISH and CSLM.Oligonucleotides able to hybridize bacterial RNA via in situ hybridization may potentially act as new antimicrobials, replacing antibiotics, and as fast in vivo diagnostic probes, outperforming current clinical methodologies. Nonetheless, oligonucleotides are not able to efficiently permeate the multi-layered bacterial envelope to reach their target RNA in the cytosol. Cationic fusogenic liposomes are here suggested as vehicles to enable the internalization of oligonucleotides in bacteria. Here, we describe the formulation of DOTAP-DOPE liposomes, their complexation with small negatively charged oligonucleotides, and the evaluation of the intracellular delivery of the oligonucleotides in bacteria. This strategy uncovers the potential of performing FISH in vivo for real-time detection and treatment of infections.Traditionally, RNA and DNA probes are used in fluorescence in situ hybridization (FISH) methods for microbial detection and characterization of communities' structure and diversity. However, the recent introduction of nucleic acid mimics (NAMs) has improved the robustness of the FISH methods in terms of sensitivity and specificity. Several NAMs have been used, of which the most relevant are peptide nucleic acid (PNA), locked nucleic acids (LNA), 2'-O-methyl RNA (2'OMe), and phosphorothioates (PS). link3 In this chapter, we describe a protocol using PNA and LNA/2'OMe probes for microbial detection by FISH, pointing out the differences between them. These protocols are easily adapted to different microorganisms and different probe sequences.

Autoři článku: Fogantonsen9926 (Hayes Choi)