Floodcampbell2357

Z Iurium Wiki

EPB41L1 gene (erythrocyte membrane protein band 4.1 like 1) encodes the protein 4.1N, a member of 4.1 family, playing a vital role in cell adhesion and migration, which is associated with the malignant progression of various human cancers. However, the expression and prognostic significance of EPB41L1 in kidney renal clear cell carcinoma (KIRC) remain to be investigated.

In this study, we collected the mRNA expression of EPB41L1 in KIRC through the Oncomine platform, and used the HPA database to perform the pathological tissue immunohistochemistry in patients. Then, the sub-groups and prognosis of KIRC were performed by UALCAN and GEPIA web-tool, respectively. Further, the mutation of EPB41L1 in KIRC was analyzed by c-Bioportal. The co-expression genes of EPB41L1 in KIRC were displayed from the LinkedOmics database, and function enrichment analysis was used by LinkFinder module in LinkedOmics. The function of EPB41L1 in cell adhesion and migration was confirmed by wound healing assay using 786-O cells in of KIRC.

In summary, EPB41L1 is constantly down-expressed in KIRC tissues, resulting a poor prognosis. Therefore, we suggest that it can be an effective biomarker for the diagnosis of KIRC.

Esophageal cancer is one of the most common cancers worldwide with poor prognosis and high mortality. The transcription factor

, encoding Snail1, is important for metastatic progression in esophageal cancer whereas the microRNA (miRNA)-203 has been shown to function as an inhibitor of metastasis in EC. The Snail1 protein is stabilized in EC partially by the deubiquitinating enzyme USP26; however, how USP26 is regulated is not completely known.

Expression of

and

messenger RNA (mRNA) and miR-203 was performed in datasets within The Cancer Genome Atlas and Gene Expression Omnibus, respectively. Expression of Snail1 and USP26 protein and miR-203 was determined in the normal esophageal cell line HET-1A and EC cell lines Kyse150 and TE-1 using western blot and quantitative polymerase chain reaction, respectively. TargetScan was used for in situ prediction of miR-203 targets and in vitro heterologous reporter assays using the wild-type and miR-203 seed mutant of the 3' Untranslated region (UTR) of

wer mechanism by which decrease in miR-203 expression potentiates metastatic progression in EC via USP26-mediated stabilization of Snail1. Hence, miR-203 can serve as a biomarker of metastasis in EC and is a potential target for therapeutic intervention in EC.

Cervical cancer (CC) is one of the most common female malignancies over the world. Microtubule-associated protein 7 (MAP7) belongs to the family of microtubule-associated proteins (MAPs) which involve in microtubule dynamics and are critical in several important cellular and intracellular activities. This study aimed to investigate the expression and potential role of MAP7 in CC.

The expression level of MAP7 in CC tissues and normal tissues were analyzed using the data obtained from The cancer genomes atlas (TCGA) and genotype-tissue expression (GTEx) databases. The prognostic value of MAP7 in patients with CC was analyzed by Kaplan-Meier analysis, Univariate and Multivariate analyses. Moreover, the influences of MAP7 expression alteration on the viability and motility of Caski, HeLa and C-33A cells was measured by CCK8 assay, colony formation assay, scratch assay, and transwell migration and invasion assays. Flow cytometry was conducted to determine cell apoptosis. Western blot was performed to evaluate kinase (ERK) in Caski and HeLa cells, and overexpression of MAP7 increased their phosphorylation in C-33A cells, indicating that MAP7 may regulate the MAPK signaling pathway in CC cells. BU-4061T In vivo assays revealed that knockdown of MAP7 remarkably repressed the growth of CC tumors.

The results of the present study suggest that MAP7 functions as a promoter during the occurrence and progression of CC, and that MAP7 may serve as a promising therapeutic target in CC.

The results of the present study suggest that MAP7 functions as a promoter during the occurrence and progression of CC, and that MAP7 may serve as a promising therapeutic target in CC.N6-methyl-adenosine(m6A) modification emerges as an abundant and dynamic regulation throughout the Eukaryotic transcriptome. Dysregulation of the m6A regulators has increasingly been found in many neoplasms. It is reasonable to believe that m6A changes the fate of cancer cells and subsequently affected all aspects of cancer progression. In view of the context-dependent role of m6A modification, we emphasize a dual effect of m6A in a particular tumor model, that is, m6A plays a promoting role or a suppressing role in different stages of cancer. This novel sight is compared to the older view that a particular m6A regulator acts as a consistent role in cancer progression.

anaplastic thyroid cancer (ATC) is one of the most lethal and aggressive cancers. Evidence has shown that the tumorigenesis of ATC is a multistep process involving the accumulation of genetic and epigenetic changes. Several studies have suggested that long non-coding RNAs (lncRNAs) may play an important role in the development and progression of ATC. In this article, we have collected the published reports about the role of lncRNAs in ATC.

"Scopus", "Web of Science", "PubMed", "Embase", etc. were systematically searched for articles published since 1990 to 2020 in English language, using the predefined keywords.

961 papers were reviewed and finally 33 papers which fulfilled the inclusion and exclusion criteria were selected. Based on this systematic review, among a lot of evidences on examining the function of lncRNAs in thyroid cancer, there are only a small number of studies about the role of lncRNAs and their molecular mechanisms in the pathogenesis of ATC.

lncRNAs play a crucial role in regulation single experiment has evaluated the expression profile in ATC tissues/cells. Therefore, further functional studies and expression profiling is needed to resolve this limitation and identify novel and valid biomarkers.

Long non-coding RNAs (lncRNAs) have been certified to be involved in the occurrence and growth of diverse cancers, including CRC. The purpose of the research was to explore the effects of lncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1) on proliferation, migration, invasion, and apoptosis in CRC cells and its mechanism.

The levels of KCNQ1OT1 and miR-329-3p were examined by quantitative real-time polymerase chain reaction (qRT-PCR) in CRC tissues and cells. The mRNA and protein levels of catenin delta-1 (CTNND1) were measured by qRT-PCR and western blot analysis, respectively. The targets of KCNQ1OT1 and miR-329-3p were predicted by online software and confirmed by luciferase reporter assay. The cell proliferation, migration, invasion, and apoptosis were examined using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), transwell, and apoptosis assay. The expression levels of CyclinD1, Bcl-2, MMP9, Cleaved-casp-3, and E-cadherin in SW480 and LS1034 cells were gauged by western blot analysis.

Autoři článku: Floodcampbell2357 (Lorentsen Korsgaard)