Flindtroach8354
This paper demonstrates the enhanced NO2 sensing performance of graphene with defects generated by rapid thermal annealing (RTA). A high temperature of RTA (300-700 °C) was applied to graphene under an argon atmosphere to form defects on sp2 carbon lattices. The density of defects proportionally increased with increasing the RTA temperature. Raman scattering results confirmed significant changes in sp2 bonding. After 700 °C RTA, ID/IG, I2D/IG, and FWHM (full width at half maximum)(G) values, which are used to indirectly investigate carbon-carbon bonds' chemical and physical properties, were markedly changed compared to the pristine graphene. Further evidence of the thermally-induced defects on graphene was found via electrical resistance measurements. The electrical resistance of the RTA-treated graphene linearly increased with increasing RTA temperature. Meanwhile, the NO2 response of graphene sensors increased from 0 to 500 °C and reached maximum (R = ~24%) at 500 °C. Then, the response rather decreased at 700 °C (R = ~14%). The results imply that rich defects formed at above a critical temperature (~500 °C) may damage electrical paths of sp2 chains and thus deteriorate NO2 response. Compared to the existing functionalization process, the RTA treatment is very facile and allows precise control of the NO2 sensing characteristics, contributing to manufacturing commercial low-cost, high-performance, integrated sensors.The present work investigated the prevalence, spatial distribution, and temporal distribution of tuberculosis (TB) in free-ranging Eurasian badgers (Meles meles) and cattle in Asturias (Atlantic Spain) during a 13-year follow-up. The study objective was to assess the role of badgers as a TB reservoir for cattle and other sympatric wild species in the region. Between 2008 and 2020, 673 badgers (98 trapped and 575 killed in road traffic accidents) in Asturias were necropsied, and their tissue samples were cultured for the Mycobacterium tuberculosis complex (MTC) isolation. Serum samples were tested in an in-house indirect P22 ELISA to detect antibodies against the MTC. In parallel, data on MTC isolation and single intradermal tuberculin test results were extracted for cattle that were tested and culled as part of the Spanish National Program for the Eradication of Bovine TB. A total of 27/639 badgers (4.23%) were positive for MTC based on bacterial isolation, while 160/673 badgers (23.77%) were found to be positive with the P22 ELISA. The rate of seropositivity was higher among adult badgers than subadults. Badger TB status was spatially and temporally associated with cattle TB status. Our results cannot determine the direction of possible interspecies transmission, but they are consistent with the idea that the two hosts may exert infection pressure on each other. This study highlights the importance of the wildlife monitoring of infection and disease during epidemiological interventions in order to optimize outcomes.Background and Objectives In the era of the coronavirus disease 2019 (COVID-19) pandemic, the management of immunosuppressive (IS) therapy in kidney transplant (KT) recipients affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires attention. It is not yet understood whether IS therapy may protect from the cytokine storm induced by SARS-CoV-2 infection or a temporary adjustment/withdrawal of IS therapy to restore the immune system may be necessary. We performed a systematic literature review to investigate the current management of IS therapy in KT recipients with COVID-1. Materials and Methods Out of 71 articles published from 1 February 2020 until 30 October 2020, 554 KT recipients with SARS-CoV-2 infection were identified. Results Modifications of IS therapy were based on the clinical conditions. For asymptomatic patients or those with mild COVID-19 symptoms, a "wait and see approach" was mostly used; a suspension of antimetabolites drugs (347/461, 75.27%) or mTOR inhibitors (38/4 of COVID-19-related complications and those due to rejection or graft loss.Oxidative stress can compromise central nervous system integrity, thereby affecting cognitive ability. Consumption of plant foods rich in antioxidants could thereby protect cognition. We systematically reviewed the literature exploring the effects of antioxidant-rich plant foods on cognition. Thirty-one studies were included 21 intervention, 4 cross-sectional (one with a cohort in prospective observation as well), and 6 prospective studies. Subjects belonged to various age classes (young, adult, and elderly). Some subjects examined were healthy, some had mild cognitive impairment (MCI), and some others were demented. Despite the different plant foods and the cognitive assessments used, the results can be summarized as follows 7 studies reported a significant improvement in all cognitive domains examined; 19 found significant improvements only in some cognitive areas, or only for some food subsets; and 5 showed no significant improvement or no effectiveness. The impact of dietary plant antioxidants on cognition appears promising most of the examined studies showed associations with significant beneficial effects on cognitive functions-in some cases global or only in some specific domains. There was typically an acute, preventive, or therapeutic effect in young, adult, and elderly people, whether they were healthy, demented, or affected by MCI. Their effects, however, are not attributable only to anti-oxidation.Formulations with lactate as an antimicrobial and high-pressure processing (HPP) as a lethal treatment are combined strategies used to control L. Fingolimod concentration monocytogenes in cooked meat products. Previous studies have shown that when HPP is applied in products with lactate, the inactivation of L. monocytogenes is lower than that without lactate. The purpose of the present work was to identify the molecular mechanisms underlying the piezo-protection effect of lactate. Two L. monocytogenes strains (CTC1034 and EGDe) were independently inoculated in a cooked ham model medium without and with 2.8% potassium lactate. Samples were pressurized at 400 MPa for 10 min at 10 °C. Samples were subjected to RNA extraction, and a shotgun transcriptome sequencing was performed. The short exposure of L. monocytogenes cells to lactate through its inoculation in a cooked ham model with lactate 1h before HPP promoted a shift in the pathogen's central metabolism, favoring the metabolism of propanediol and ethanolamine together with the synthesis of the B12 cofactor. Moreover, the results suggest an activated methyl cycle that would promote modifications in membrane properties resulting in an enhanced resistance of the pathogen to HPP. This study provides insights on the mechanisms developed by L. monocytogenes in response to lactate and/or HPP and sheds light on the understanding of the piezo-protective effect of lactate.Starting from the [PtCl(η1-C2H4OMe)(phen)] (phen = 1,10-phenanthroline, 1) platinum(II) precursor, we synthesized and characterized by multinuclear NMR new [Pt(η1-C2H4OMe)(L)(phen)]+ (L = NH3, 2; DMSO, 3) complexes. These organometallic species, potentially able to interact with cell membrane organic cation transporters (OCT), violating some of the classical rules for antitumor activity of cisplatin analogues, were evaluated for their cytotoxicity. Interestingly, despite both complexes 2 and 3 resulting in greater cell uptake than cisplatin in selected tumor cell lines, only 3 showed comparable or higher antitumor activity. General low cytotoxicity of complex 2 in the tested cell lines (SH-SY5Y, SK-OV-3, Hep-G2, Caco-2, HeLa, MCF-7, MG-63, ZL-65) appeared to depend on its stability towards solvolysis in neutral water, as assessed by NMR monitoring. Differently, the [Pt(η1-C2H4OMe)(DMSO)(phen)]+ (3) complex was easily hydrolyzed in neutral water, resulting in a comparable or higher cytotoxicity in cancer cells with respect to cisplatin. Further, both IC50 values and the uptake profiles of the active complex appeared quite different in the used cell lines, suggesting the occurrence of diversified biological effects. link2 Nevertheless, further studies on the metabolism of complex 3 should be performed before planning its possible use in tissue- and tumor-specific drug design.With the exponential growth of mobile devices and the emergence of computationally intensive and delay-sensitive tasks, the enormous demand for data and computing resources has become a big challenge. Fortunately, the combination of mobile edge computing (MEC) and ultra-dense network (UDN) is considered to be an effective way to solve these challenges. Due to the highly dynamic mobility of mobile devices and the randomness of the work requests, the load imbalance between MEC servers will affect the performance of the entire network. In this paper, the software defined network (SDN) is applied to the task allocation in the MEC scenario of UDN, which is based on routing of corresponding information between MEC servers. link3 Secondly, a new load balancing algorithm based on load estimation by user load prediction is proposed to solve the NP-hard problem in task offloading. Furthermore, a genetic algorithm (GA) is used to prove the effectiveness and rapidity of the algorithm. At present, if the load balancing algorithm only depends on the actual load of each MEC, it usually leads to ping-pong effect. It is worth mentioning that our method can effectively reduce the impact of ping-pong effect. In addition, this paper also discusses the subtask offloading problem of divisible tasks and the corresponding solutions. At last, simulation results demonstrate the efficiency of our method in balancing load among MEC servers and its ability to optimize systematic stability.Despite the global shift to ambulatory tuberculosis (TB) care, hospitalizations remain common in Uzbekistan. This study examined the duration and determinants of hospitalizations among adult patients (≥18 years) with urogenital TB (UGTB) treated with first-line anti-TB drugs during 2016-2018 in Tashkent, Uzbekistan. This was a cohort study based on the analysis of health records. Of 142 included patients, 77 (54%) were males, the mean (±standard deviation) age was 40 ± 16 years, and 68 (48%) were laboratory-confirmed. A total of 136 (96%) patients were hospitalized during the intensive phase, and 12 (8%) had hospital admissions during the continuation phase of treatment. The median length of stay (LOS) during treatment was 56 days (Interquartile range 56-58 days). LOS was associated with history of migration (adjusted incidence rate ratio (aIRR) 0.46, 95% confidence interval (CI) 0.32-0.69, p less then 0.001); UGTB-related surgery (aIRR 1.18, 95% CI 1.01-1.38, p = 0.045); and hepatitis B comorbidity (aIRR 3.18, 95% CI 1.98-5.39, p less then 0.001). The treatment success was 94% and it was not associated with the LOS. Hospitalization was almost universal among patients with UGTB in Uzbekistan. Future research should focus on finding out what proportion of hospitalizations were not clinically justified and could have been avoided.Maternal nutritional imbalances, in addition to maternal overweight and obesity, can result in long-term effects on the metabolic health of the offspring, increasing the risk of common non-communicable disorders such as obesity, diabetes and cardiovascular disease. This increased disease risk may also be transmitted across generations. Unfortunately, lifestyle interventions have shown reduced compliancy and limited efficacy. Resveratrol is a natural polyphenolic compound reported to have pleiotropic beneficial actions including a possible protective effect against the metabolic programming induced by poor dietary habits during development. However, studies to date are inconclusive regarding the potential metabolic benefits of maternal resveratrol supplementation during pregnancy and lactation on the offspring. Moreover, the responses to metabolic challenges are suggested to be different in males and females, suggesting that the effectiveness of treatment strategies may also differ, but many studies have been performed only in males.