Flemingandrews2834
The beetle diversity of the sampled mountains showed multiple alpha and beta patterns according to type of mountain ecosystem and elevation, providing guidelines for the scientific community to underpin conservation efforts in Malaysia.Sympatric coexistence of recently diverged species raises the question of barriers restricting the gene flow between them. Reproductive isolation may be implemented at several levels, and the weakening of some, e.g. 6-Diazo-5-oxo-L-nor-Leucine premating, barriers may require the strengthening of the others, e.g. postcopulatory ones. We analysed mating patterns and shell size of mates in recently diverged closely related species of the subgenus Littorina Neritrema (Littorinidae, Caenogastropoda) in order to assess the role of premating reproductive barriers between them. We compared mating frequencies observed in the wild with those expected based on relative densities using partial canonical correspondence analysis. We introduced the fidelity index (FI) to estimate the relative accuracy of mating with conspecific females and precopulatory isolation index (IPC) to characterize the strength of premating barriers. The species under study, with the exception of L. arcana, clearly demonstrated preferential mating with conspecifics. According to FI and IPC, L. fabalis and L. compressa appeared reliably isolated from their closest relatives within Neritrema. Individuals of these two species tend to be smaller than those of the others, highlighting the importance of shell size changes in gastropod species divergence. L. arcana males were often found in pairs with L. saxatilis females, and no interspecific size differences were revealed in this sibling species pair. We discuss the lack of discriminative mate choice in the sympatric populations of L. arcana and L. saxatilis, and possible additional mechanisms restricting gene flow between them.By using density functional theory calculations, we have studied the effects of V-, Cr-, Mn-, Fe- and Co-doped on the electronic and magnetic properties of the 1T-NiS2 monolayer. The results show that pure 1T-NiS2 monolayer is a non-magnetic semiconductor. Whereas depending on the species of transition metal atom, the substituted 1T-NiS2 monolayer can become a magnetic semiconductor (Mn-doped), half-metal (V- and Fe-doped) and magnetic (Cr-doped) or non-magnetic (Co-doped) metal. The results indicate that the magnetism can be controlled by the doping of 3d transition metal atoms on the monolayer. In this paper, the engineering of the electric and magnetic properties of 1T-NiS2 monolayer is revealed. link2 It is clear that it could have a promising application in new nanoelectronic and spintronic devices.Hypokalemia is a common electrolyte disturbance and is related to poor prognosis in patients with cardiovascular disease. However, the role of hypokalemia in patients with vasospastic angina (VSA) has not yet been studied. The present study enrolled 1454 patients diagnosed with VSA according to ergonovine provocation test results and available admission serum potassium data. The primary outcome was a composite of cardiac death, acute coronary syndrome, and new-onset life-threatening arrhythmia. Based on a hypokalemia definition as serum potassium concentration ≤ 3.5 mEq/L, the hypokalaemia group included 70 patients (4.8%). The median potassium levels were 3.4 mEq/L [interquartile range (IQR) 3.3-3.5] in the hypokalemia group and 4.1 mEq/L (IQR 3.9-4.3) in the no-hypokalemia group. The median follow-up duration was 764 days. Primary outcomes occurred in seven patients (10.0%) in the hypokalemia group and 51 patients (3.7%) in the no-hypokalemia group. The Kaplan-Meier analysis showed a higher cumulative incidence of primary outcomes in the hypokalemia group compared to that in the no-hypokalemia group (log-rank P = 0.014). Multivariate Cox regression analysis also showed that hypokalemia was an independent predictor of primary outcomes. In conclusion, hypokalemia at admission was associated with adverse clinical outcomes in VSA.The detection of event-related potentials (ERPs) through electroencephalogram (EEG) analysis is a well-established method for understanding brain functions during a cognitive process. To increase the signal-to-noise ratio (SNR) and stationarity of the data, ERPs are often filtered to a wideband frequency range, such as 0.05-30 Hz. Alternatively, a natural-filtering procedure can be performed through empirical mode decomposition (EMD), which yields intrinsic mode functions (IMFs) for each trial of the EEG data, followed by averaging over trials to generate the event-related modes. However, although the EMD-based filtering procedure has advantages such as a high SNR, suitable waveform shape, and high statistical power, one fundamental drawback of the procedure is that it requires the selection of an IMF (or a partial sum of a range of IMFs) to determine an ERP component effectively. Therefore, in this study, we propose an intrinsic ERP (iERP) method to overcome the drawbacks and retain the advantages of event-related mode analysis for investigating ERP components. The iERP method can reveal multiple ERP components at their characteristic time scales and suitably cluster statistical effects among modes by using a tailored definition of each mode's neighbors. We validated the iERP method by using realistic EEG data sets acquired from a face perception task and visual working memory task. By using these two data sets, we demonstrated how to apply the iERP method to a cognitive task and incorporate existing cluster-based tests into iERP analysis. Moreover, iERP analysis revealed the statistical effects between (or among) experimental conditions more effectively than the conventional ERP method did.Tumors experience temporal and spatial fluctuations in oxygenation. Hypoxia inducible transcription factors (HIF-α) respond to low levels of oxygen and induce re-supply oxygen. HIF-α stabilization is typically facultative, induced by hypoxia and reduced by normoxia. In some cancers, HIF-α stabilization becomes constitutive under normoxia. We develop a mathematical model that predicts how fluctuating oxygenation affects HIF-α stabilization and impacts net cell proliferation by balancing the base growth rate, the proliferative cost of HIF-α expression, and the mortality from not expressing HIF-α during hypoxia. We compare optimal net cell proliferation rate between facultative and constitutive HIF-α regulation in environments with different oxygen profiles. We find that that facultative HIF-α regulation promotes greater net cell proliferation than constitutive regulation with stochastic or slow periodicity in oxygenation. However, cell fitness is nearly identical for both HIF-α regulation strategies under rapid periodic oxygenation fluctuations. The model thus indicates that cells constitutively expressing HIF-α may be at a selective advantage when the cost of expression is low. In cancer, this condition is known as pseudohypoxia or the "Warburg Effect". We conclude that rapid and regular cycling of oxygenation levels selects for pseudohypoxia, and that this is consistent with the ecological theory of optimal defense.Facemasks are essential for healthcare workers but characteristics of the voice whilst wearing this personal protective equipment are not well understood. In the present study, we compared acoustic voice measures in recordings of sixteen adults producing standardised vocal tasks with and without wearing either a surgical mask or a KN95 mask. Data were analysed for mean spectral levels at 0-1 kHz and 1-8 kHz regions, an energy ratio between 0-1 and 1-8 kHz (LH1000), harmonics-to-noise ratio (HNR), smoothed cepstral peak prominence (CPPS), and vocal intensity. In connected speech there was significant attenuation of mean spectral level at 1-8 kHz region and there was no significant change in this measure at 0-1 kHz. Mean spectral levels of vowel did not change significantly in mask-wearing conditions. LH1000 for connected speech significantly increased whilst wearing either a surgical mask or KN95 mask but no significant change in this measure was found for vowel. HNR was higher in the mask-wearing conditions than the no-mask condition. CPPS and vocal intensity did not change in mask-wearing conditions. These findings implied an attenuation effects of wearing these types of masks on the voice spectra with surgical mask showing less impact than the KN95.By using gold (Au) nanoparticles (NPs) as an optical near-field source under far-field illumination in combination with a silver (Ag) ion solution containing a photoinitiator, we coated Ag on Au NPs using a near-field (NF)-assisted process. We evaluated the change in the size of the NPs using transmission electron microscopy. Evaluation of the synthesized Ag volume over illumination power confirmed the squared power dependence of the NP volume with illumination using 808 nm light, i.e., a wavelength longer than the absorption edge wavelength of the photoinitiator molecules. The rate of volume increase was much lower than the plasmonic field enhancement effect. Therefore, the squared power dependency of the volume increase using a wavelength longer than the absorption edge wavelength originated from NF-assisted second-harmonic generation and the resulting excitation.Obtaining (dynamic) structure related information on proteins is key for understanding their function. link3 Methods as single-molecule Förster Resonance Energy Transfer (smFRET) and Electron Paramagnetic Resonance (EPR) that measure distances between labeled residues to obtain dynamic information rely on selection of suitable residue pairs for chemical modification. Selection of pairs of amino acids, that show sufficient distance changes upon activity of the protein, can be a tedious process. Here we present an in silico approach that makes use of two or more structures (or structure models) to filter suitable residue pairs for FRET or EPR from all possible pairs within the protein. We apply the method for the study of the conformational dynamics of the substrate-binding domain of the osmoregulatory ATP-Binding Cassette transporter OpuA. This method speeds up the process of designing mutants, and because of its systematic nature, the chances of missing promising candidates are reduced.In nature, photoperiod signals environmental seasonality and is a strong selective "zeitgeber" that synchronizes biological rhythms. For animals facing seasonal environmental challenges and energetic bottlenecks, daily torpor and hibernation are two metabolic strategies that can save energy. In the wild, the dwarf lemurs of Madagascar are obligate hibernators, hibernating between 3 and 7 months a year. In captivity, however, dwarf lemurs generally express torpor for periods far shorter than the hibernation season in Madagascar. We investigated whether fat-tailed dwarf lemurs (Cheirogaleus medius) housed at the Duke Lemur Center (DLC) could hibernate, by subjecting 8 individuals to husbandry conditions more in accord with those in Madagascar, including alternating photoperiods, low ambient temperatures, and food restriction. All dwarf lemurs displayed daily and multiday torpor bouts, including bouts lasting ~ 11 days. Ambient temperature was the greatest predictor of torpor bout duration, and food ingestion and night length also played a role.