Finneganmunn4411
Repeated blood feedings are required for adult female mosquitoes to maintain their gonadotrophic cycles, enabling them to be important pathogen carriers of human diseases. Elucidating the molecular mechanism underlying developmental switches between these mosquito gonadotrophic cycles will provide valuable insight into mosquito reproduction and could aid in the identification of targets to disrupt these cycles, thereby reducing disease transmission. We report here that the transcription factor ecdysone-induced protein 93 (E93), previously implicated in insect metamorphic transitions, plays a key role in determining the gonadotrophic cyclicity in adult females of the major arboviral vector Aedes aegypti Expression of the E93 gene in mosquitoes is down-regulated by juvenile hormone (JH) and up-regulated by 20-hydroxyecdysone (20E). We find that E93 controls Hormone Receptor 3 (HR3), the transcription factor linked to the termination of reproductive cycles. Moreover, knockdown of E93 expression via RNAi impaired fat body autophagy, suggesting that E93 governs autophagy-induced termination of vitellogenesis. E93 RNAi silencing prior to the first gonadotrophic cycle affected normal progression of the second cycle. Finally, transcriptomic analysis showed a considerable E93-dependent decline in the expression of genes involved in translation and metabolism at the end of a reproductive cycle. In conclusion, our data demonstrate that E93 acts as a crucial factor in regulating reproductive cycle switches in adult female mosquitoes.The TGFβ cytokine family member, GDF-15, reduces food intake and body weight and represents a potential treatment for obesity. Because the brainstem-restricted expression pattern of its receptor, GDNF Family Receptor α-like (GFRAL), presents an exciting opportunity to understand mechanisms of action for area postrema neurons in food intake; we generated Gfral Cre and conditional Gfral CreERT mice to visualize and manipulate GFRAL neurons. We found infection or pathophysiologic states (rather than meal ingestion) stimulate GFRAL neurons. TRAP-Seq analysis of GFRAL neurons revealed their expression of a wide range of neurotransmitters and neuropeptides. Artificially activating Gfral Cre -expressing neurons inhibited feeding, decreased gastric emptying, and promoted a conditioned taste aversion (CTA). see more GFRAL neurons most strongly innervate the parabrachial nucleus (PBN), where they target CGRP-expressing (CGRPPBN) neurons. Silencing CGRPPBN neurons abrogated the aversive and anorexic effects of GDF-15. These findings suggest that GFRAL neurons link non-meal-associated pathophysiologic signals to suppress nutrient uptake and absorption.Complex systems can convert energy imparted by nonequilibrium forces to regulate how quickly they transition between long-lived states. While such behavior is ubiquitous in natural and synthetic systems, currently there is no general framework to relate the enhancement of a transition rate to the energy dissipated or to bound the enhancement achievable for a given energy expenditure. We employ recent advances in stochastic thermodynamics to build such a framework, which can be used to gain mechanistic insight into transitions far from equilibrium. We show that under general conditions, there is a basic speed limit relating the typical excess heat dissipated throughout a transition and the rate amplification achievable. We illustrate this tradeoff in canonical examples of diffusive barrier crossings in systems driven with autonomous and deterministic external forcing protocols. In both cases, we find that our speed limit tightly constrains the rate enhancement.The earliest dinosaurs (theropods and sauropodomorphs) are found in fossiliferous early Late Triassic strata dated to about 230 million years ago (Ma), mainly in northwestern Argentina and southern Brazil in the Southern Hemisphere temperate belt of what was Gondwana in Pangea. Sauropodomorphs, which are not known for the entire Triassic in then tropical North America, eventually appear 15 million years later in the Northern Hemisphere temperate belt of Laurasia. link2 The Pangea supercontinent was traversable in principle by terrestrial vertebrates, so the main barrier to be surmounted for dispersal between hemispheres was likely to be climatic; in particular, the intense aridity of tropical desert belts and unstable climate in the equatorial humid belt accompanying high atmospheric pCO2 that characterized the Late Triassic. We revisited the chronostratigraphy of the dinosaur-bearing Fleming Fjord Group of central East Greenland and, with additional data, produced a correlation of a detailed magnetostratigraphy from more than 325 m of composite section from two field areas to the age-calibrated astrochronostratigraphic polarity time scale. This age model places the earliest occurrence of sauropodomorphs (Plateosaurus) in their northernmost range to ∼214 Ma. The timing is within the 215 to 212 Ma (mid-Norian) window of a major, robust dip in atmospheric pCO2 of uncertain origin but which may have resulted in sufficiently lowered climate barriers that facilitated the initial major dispersal of the herbivorous sauropodomorphs to the temperate belt of the Northern Hemisphere. Indications are that carnivorous theropods may have had dispersals that were less subject to the same climate constraints.Experiencing some early life adversity can have an "inoculating" effect that promotes resilience in adulthood. However, the mechanisms underlying stress inoculation are unknown, and animal models are lacking. Here we used the limited bedding and nesting (LBN) model of adversity to evaluate stress inoculation of addiction-related phenotypes. In LBN, pups from postnatal days 2 to 9 and their dams were exposed to a low-resource environment. In adulthood, they were tested for addiction-like phenotypes and compared to rats raised in standard housing conditions. High levels of impulsivity are associated with substance abuse, but in males, LBN reduced impulsive choice compared to controls. LBN males also self-administered less morphine and had a lower breakpoint on a progressive ratio reinforcement schedule than controls. These effects of LBN on addiction-related behaviors were not found in females. Because the nucleus accumbens (NAc) mediates these behaviors, we tested whether LBN altered NAc physiology in drug-naïve and morphine-exposed rats. LBN reduced the frequency of spontaneous excitatory postsynaptic currents in males, but a similar effect was not observed in females. Only in males did LBN prevent a morphine-induced increase in the AMPA/NMDA ratio. RNA sequencing was performed to delineate the molecular signature in the NAc associated with LBN-derived phenotypes. LBN produced sex-specific changes in transcription, including in genes related to glutamate transmission. Collectively, these studies reveal that LBN causes a male-specific stress inoculation effect against addiction-related phenotypes. Identifying factors that promote resilience to addiction may reveal novel treatment options for patients.Both gene repressor (Polycomb-dependent) and activator (Polycomb-independent) functions of the Polycomb protein enhancer of zeste homolog 2 (EZH2) are implicated in cancer progression. EZH2 protein can be phosphorylated at various residues, such as threonine 487 (T487), by CDK1 kinase, and such phosphorylation acts as a Polycomb repressive complex 2 (PRC2) suppression "code" to mediate the gene repressor-to-activator switch of EZH2 functions. Here we demonstrate that the histone reader protein ZMYND8 is overexpressed in human clear cell renal cell carcinoma (ccRCC). ZMYND8 binds to EZH2, and their interaction is largely enhanced by CDK1 phosphorylation of EZH2 at T487. ZMYND8 depletion not only enhances Polycomb-dependent function of EZH2 in hypoxia-exposed breast cancer cells or von Hippel-Lindau (VHL)-deficient ccRCC cells, but also suppresses the FOXM1 transcription program. We further show that ZMYND8 is required for EZH2-FOXM1 interaction and is important for FOXM1-dependent matrix metalloproteinase (MMP) gene expression and EZH2-mediated migration and invasion of VHL-deficient ccRCC cells. Our results identify a previously uncharacterized role of the chromatin reader ZMYND8 in recognizing the PRC2-inhibitory phosphorylation "code" essential for the Polycomb-dependent to -independent switch of EZH2 functions. They also reveal an oncogenic pathway driving cell migration and invasion in hypoxia-inducible factor-activated (hypoxia or VHL-deficient) cancer.The central question in the origin of life is to understand how structure can emerge from randomness. The Eigen theory of replication states, for sequences that are copied one base at a time, that the replication fidelity has to surpass an error threshold to avoid that replicated specific sequences become random because of the incorporated replication errors [M. Eigen, Naturwissenschaften 58 (10), 465-523 (1971)]. Here, we showed that linking short oligomers from a random sequence pool in a templated ligation reaction reduced the sequence space of product strands. We started from 12-mer oligonucleotides with two bases in all possible combinations and triggered enzymatic ligation under temperature cycles. Surprisingly, we found the robust creation of long, highly structured sequences with low entropy. At the ligation site, complementary and alternating sequence patterns developed. However, between the ligation sites, we found either an A-rich or a T-rich sequence within a single oligonucleotide. Our modeling suggests that avoidance of hairpins was the likely cause for these two complementary sequence pools. What emerged was a network of complementary sequences that acted both as templates and substrates of the reaction. This self-selecting ligation reaction could be restarted by only a few majority sequences. The findings showed that replication by random templated ligation from a random sequence input will lead to a highly structured, long, and nonrandom sequence pool. This is a favorable starting point for a subsequent Darwinian evolution searching for higher catalytic functions in an RNA world scenario.In this study, we utilized a panel of human immunoglobulin (Ig) IgA monoclonal antibodies isolated from the plasmablasts of eight donors after 2014/2015 influenza virus vaccination (Fluarix) to study the binding and functional specificities of this isotype. In this cohort, isolated IgA monoclonal antibodies were primarily elicited against the hemagglutinin protein of the H1N1 component of the vaccine. To compare effector functionalities, an H1-specific subset of antibodies targeting distinct epitopes were expressed as monomeric, dimeric, or secretory IgA, as well as in an IgG1 backbone. When expressed with an IgG Fc domain, all antibodies elicited Fc-effector activity in a primary polymorphonuclear cell-based assay which differs from previous observations that found only stalk-specific antibodies activate the low-affinity FcγRIIIa. However, when expressed with IgA Fc domains, only antibodies targeting the stalk domain showed Fc-effector activity in line with these previous findings. To identify the cause of this discrepancy, we then confirmed that IgG signaling through the high-affinity FcγI receptor was not restricted to stalk epitopes. link3 Since no corresponding high-affinity Fcα receptor exists, the IgA repertoire may therefore be limited to stalk-specific epitopes in the context of Fc receptor signaling.