Finchgissel8904
Background The co-fermentation of syngas (mainly CO, H2 and CO2) and different concentrations of carbohydrate/protein synthetic wastewater to produce volatile fatty acids (VFAs) was conducted in the present study. Results It was found that co-fermentation of syngas with carbohydrate-rich synthetic wastewater could enhance the conversion efficiency of syngas and the most efficient conversion of syngas was obtained by co-fermentation of syngas with 5 g/L glucose, which resulted in 25% and 43% increased conversion efficiencies of CO and H2, compared to syngas alone. The protein-rich synthetic wastewater as co-substrate, however, had inhibition on syngas conversion due to the presence of high concentration of NH4 +-N (> 900 mg/L) produced from protein degradation. qPCR analysis found higher concentration of acetogens, which could use CO and H2, was present in syngas and glucose co-fermentation system, compared to glucose solo-fermentation or syngas solo-fermentation. In addition, the known acetogen Clostridium foty acids, which would for sure have a great interest for the scientific and engineering community. Furthermore, the present study also used the combination of high-throughput sequencing of 16S rRNA genes, qPCR analysis and label-free quantitative proteomic analysis to provide deep insights of the co-fermentation process from the taxonomic and proteomic aspects, which should be applied for future studies relating with anaerobic fermentation. © The Author(s) 2020.Background Biological α-olefins can be used as both biofuels and high value-added chemical precursors to lubricants, polymers, and detergents. The prototypic CYP152 peroxygenase family member OleTJE from Jeotgalicoccus sp. ATCC 8456 catalyzes a single-step decarboxylation of free fatty acids (FFAs) to form α-olefins using H2O2 as a cofactor, thus attracting much attention since its discovery. To improve the productivity of α-olefins, significant efforts on protein engineering, electron donor engineering, and metabolic engineering of OleTJE have been made. However, little success has been achieved in obtaining α-olefin high-producer microorganisms due to multiple reasons such as the tight regulation of FFA biosynthesis, the difficulty of manipulating multi-enzyme metabolic network, and the poor catalytic performance of OleTJE. Results In this study, a novel enzyme cascade was developed for one-pot production of α-olefins from low-cost triacylglycerols (TAGs) and natural oils without exogenous H2O2 addition. Thfin transformation. It is anticipated that this biotransformation system will become industrially relevant in the future upon more engineering efforts based on this proof-of-concept work. © The Author(s) 2020.Background Dicarboxylic acids offer several applications in detergent builder and biopolymer fields. One of these acids, 4-O-methyl d-glucaric acid, could potentially be produced from glucuronoxylans, which are a comparatively underused fraction of wood and agricultural biorefineries. Results Accordingly, an enzymatic pathway was developed that combines AxyAgu115A, a GH115 α-glucuronidase from Amphibacillus xylanus, and GOOX, an AA7 gluco-oligosaccharide oxidase from Sarocladium strictum, to produce this bio-based chemical from glucuronoxylan. AxyAgu115A was able to release almost all 4-O-methyl d-glucuronic acid from glucuronoxylan while a GOOX variant, GOOX-Y300A, could convert 4-O-methyl d-glucuronic acid to the corresponding glucaric acid at a yield of 62%. Both enzymes worked effectively at alkaline conditions that increase xylan solubility. Given the sensitivity of AxyAgu115A to hydrogen peroxide and optimal performance of GOOX-Y300A at substrate concentrations above 20 mM, the two-step enzyme pathway was demonstrated as a sequential, one-pot reaction. Additionally, the resulting xylan was easily recovered from the one-pot reaction, and it was enzymatically hydrolysable. Conclusions The pathway in this study requires only two enzymes while avoiding a supplementation of costly cofactors. Acalabrutinib This cell-free approach provides a new strategy to make use of the underutilized hemicellulose stream from wood and agricultural biorefineries. © The Author(s) 2020.Background Caldicellulosiruptor bescii, a promising biocatalyst being developed for use in consolidated bioprocessing of lignocellulosic materials to ethanol, grows poorly and has reduced conversion at elevated medium osmolarities. Increasing tolerance to elevated fermentation osmolarities is desired to enable performance necessary of a consolidated bioprocessing (CBP) biocatalyst. Results Two strains of C. bescii showing growth phenotypes in elevated osmolarity conditions were identified. The first strain, ORCB001, carried a deletion of the FapR fatty acid biosynthesis and malonyl-CoA metabolism repressor and had a severe growth defect when grown in high-osmolarity conditions-introduced as the addition of either ethanol, NaCl, glycerol, or glucose to growth media. The second strain, ORCB002, displayed a growth rate over three times higher than its genetic parent when grown in high-osmolarity medium. Unexpectedly, a genetic complement ORCB002 exhibited improved growth, failing to revert the observed phenotypeunintended, secondary mutations present in another transcription factor deletion strain. Though the locus/loci and mechanism(s) responsible remain unknown, candidate mutations are identified, including a mutation in the dnaK chaperone coding sequence. These results illustrate both the promise of targeted regulatory manipulation for osmotolerance (in the case of fapR) and the challenges (in the case of fruR/cra). © The Author(s) 2020.Background Isopods have colonized all environments, partly thanks to their ability to decompose the organic matter. Their enzymatic repertoire, as well as the one of their associated microbiota, has contributed to their colonization success. Together, these holobionts have evolved several interesting life history traits to degrade the plant cell walls, mainly composed of lignocellulose. It has been shown that terrestrial isopods achieve lignocellulose degradation thanks to numerous and diverse CAZymes provided by both the host and its microbiota. Nevertheless, the strategies for lignocellulose degradation seem more diversified in isopods, in particular in aquatic species which are the least studied. Isopods could be an interesting source of valuable enzymes for biotechnological industries of biomass conversion. Results To provide new features on the lignocellulose degradation in isopod holobionts, shotgun sequencing of 36 metagenomes of digestive and non-digestive tissues was performed from several populations of four aquatic and terrestrial isopod species.