Fieldwelch9447

Z Iurium Wiki

A double-nozzle electrospinning technique was adopted in the present study to yield a novel bifunctional wound dressing composed of curcumin (Cur) and surfactin (Sur)-loaded poly(ε-caprolactone) (PCL)-gelatin (Gel). To comprehensively unveil the effect of both composition and drug molecules on the applicability, different dressings composed of PCL, Gel, and combination of the polymers with the drug molecules were fabricated. Besides the physicochemical properties, the in vitro and in vivo biological properties of prepared wound dressings were assessed. The results showed that increasing in the Cur from 0 to 3% (w/w) and Sur from 0 to 0.2 mg/mL caused a decrease in the elastic modulus on the one hand. On the other hand, the tensile strength and elongation at break experienced an increase in their values. The wettability, swelling capacity, and degradation rate of PCL improved significantly when both Gel and the drug molecules had been added. The dressings encompassing Sur (0.2 mg/mL) exhibited an excellent antibacterial activity after 24 h (>99%). Moreover, a sustained release of Cur up to 14 days was obtained. The in vitro cell compatibility tests implied a desirable result for all dressings without taking the composition into consideration. To complement the in vitro studies, the PCL/0.2Sur-Gel/3%Cur dressing was further assessed in vivo and the results revealed a significant improvement in the healing rate compared to control groups proofing its great potential for accelerated wound healing applications.Heap-up of α-synuclein (α-Syn) and its association with tau protein are esteemed to trigger the onset of Parkinson's disease (PD). The purpose of this study was to develop multi-functional liposomes incorporated with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, 1,2-dimyristoyl-sn-glycero-3-phosphocholine and phosphatidylserine (PS) to load astragaloside IV (AS-IV) and nestifin-1 (NF-1), followed by grafting with wheat germ agglutinin (WGA) and leptin (Lep) (WGA-Lep-AS-IV-NF-1-PS-liposomes) to protect dopaminergic neurons from apoptosis. Experimental results showed that increasing the mole percentage of DSPC and PS enhanced the particle size, particle stability and entrapment efficiency of AS-IV and NF-1, and reduced the drug releasing rate. Strong affinity of NF-1 to PS was evidenced by nuclear magnetic resonance spectroscopy. WGA-Lep-AS-IV-NF-1-PS-liposomes diminished transendothelial electrical resistance and improved the capacity of propidium iodide, AS-IV and NF-1 to penetrate the blood-brain barrier (BBB). Immunocytochemical staining exhibited the ability of functionalized liposomes to target Lep receptor and α-Syn in MPP+-insulted SH-SY5Y cells. Western blots revealed a substantial reduction of α-Syn and phosphorylated tau protein in the anti-oxidative pathway through interaction with PS. During the course of treatment with WGA-Lep-AS-IV-NF-1-PS-liposomes, the combined activity of AS-IV and NF-1 and recognition capability simultaneously decreased the expression of Bax, and increased the expressions of Bcl-2, tyrosine hydroxylase and dopamine transporter. The liposomes carrying AS-IV and NF-1 can rescue degenerated neurons and are a promising formulation to achieve better PD management.Tissue-engineered skin, as a promising skin substitute, can be used for in vitro skin research and skin repair. However, most of research on tissue-engineered skin tend to ignore the rete ridges (RRs) microstructure, which enhances the adhesion between dermis and epidermis and provides a growth environment for epidermal stem cells. Here, we prepared and characterized photocurable gelatin methacrylated (GelMA) and poly(ethylene glycol) diacrylate (PEGDA) co-network hydrogels with different concentrations. Using a UV curing 3D printer, resin molds were designed and fabricated to create three-dimensional micropatterns and replicated onto GelMA-PEGDA scaffolds. Human keratinocytes (HaCaTs) and human skin fibroblasts (HSFs) were co-cultured on the hydrogel scaffold to prepare tissue-engineered skin. The results showed that 10%GelMA-2%PEGDA hydrogel provides the sufficient mechanical properties and biocompatibility to prepare a human skin model with RRs microstructure, that is, it presents excellent structural support, suitable degradation rate, good bioactivity and is suitable for long-term culturing. Digital microscope image analyses showed the micropattern was well-transferred onto the scaffold surface. Both in vitro and in vivo experiments confirmed the formation of the epidermal layer with undulating microstructure. In wound healing experiments, hydrogel can significantly accelerate wound healing. This study provides a simple and powerful way to mimic the structures of human skin and can make a contribution to skin tissue engineering and wound healing.Recent COVID-19 pandemic has claimed millions of lives due to lack of a rapid diagnostic tool. Global scientific community is now making joint efforts on developing rapid and accurate diagnostic tools for early detection of viral infections to preventing future outbreaks. Conventional diagnostic methods for virus detection are expensive and time consuming. There is an immediate requirement for a sensitive, reliable, rapid and easy-to-use Point-of-Care (PoC) diagnostic technology. Electrochemical biosensors have the potential to fulfill these requirements, but they are less sensitive for sensing viruses/viral infections. However, sensitivity and performance of these electrochemical platforms can be improved by integrating carbon nanostructure, such as graphene and carbon nanotubes (CNTs). These nanostructures offer excellent electrical property, biocompatibility, chemical stability, mechanical strength and, large surface area that are most desired in developing PoC diagnostic tools for detecting viral infections with speed, sensitivity, and cost-effectiveness. This review summarizes recent advancements made toward integrating graphene/CNTs nanostructures and their surface modifications useful for developing new generation of electrochemical nanobiosensors for detecting viral infections. The review also provides prospects and considerations for extending the graphene/CNTs based electrochemical transducers into portable and wearable PoC tools that can be useful in preventing future outbreaks and pandemics.Phototherapy has attracted increasing attention in cancer therapy owing to its non-invasive nature, high spatiotemporal selectivity, and negligible side effects. However, a single photosensitizer often exhibits poor photothermal conversion efficiency or insufficient reactive oxygen species (ROS) productivity. Even worse, the ROS can be consumed by tumor overexpressed reductive glutathione, resulting in severely compromised phototherapy. In this paper, we prepared a MnII-coordination driven dual-photosensitizers co-assemblies (IMCP) for imaging-guided self-enhanced PDT/PTT. Specifically, a photothermal agent indocyanine green (ICG), a photodynamic agent chlorin e6 (Ce6), and a transition metal ion (MnII/III) were chosen to synthesize the nanodrug via coordination-driven co-assembly. The as-prepared IMCP exhibited extremely high photosensitizer payload (96 wt%), excellent physiological stability, and outstanding tumor accumulation. Moreover, the existence of MnII not only assists the nanostructure formation but also could competitively coordinate with GSH to minimize the unnecessary ROS consumption, thus improving PDT efficiency. Meanwhile, benefiting from the intrinsic fluorescence, photoacoustic imaging ability of photosensitizers, and the MRI contrast potential of MnII/III, IMCP exhibited superior imaging potential for guiding tumor phototherapy. By changing the excitation wavelength suitably, IMCP could realize the switch between PTT and PDT. In short, the dual-PSs co-assembled nanotheranostic has great potential for multi-modal imaging guided phototherapy.The use of viral vectors for in vivo gene therapy can be severely limited by their immunogenicity. Non-viral vectors may represent an alternative, however, reports analyzing their immunogenicity are still lacking. Here, we studied the humoral immune response in a murine model triggered by artificial virus-like particles (AVLPs) carrying plasmid or antisense DNA. The AVLPs were assembled using a family of modular proteins based on bioinspired collagen-like and silk-like sequences that produce virus-like particles. We compared our AVLPs against an Adeno Associated Virus 1 (AAV), a widely used viral vector for in vivo gene delivery that has been approved by the FDA and EMA for gene therapy. We found that a 1000-fold higher mass of AVLPs than AAV are necessary to obtain similar specific antibody titters. Furthermore, we studied the stability of AVLPs against relevant biological reagents such as heparin and fetal bovine serum to ensure nucleic acid protection in biological media. Our study demonstrates that the AVLPs are stable in physiological conditions and can overcome safety limitations such as immunogenicity. The scarce humoral immunogenicity and high stability found with AVLPs suggest that they have potential to be used as stealth non-viral gene delivery systems for in vivo studies or gene therapy.Implant-related bacterial infection is a serious complication, which even causes implant failure. Silver (Ag) nanoparticles are broadly used antibacterial agents due to their excellent antibacterial ability and broad-spectrum bactericidal property. However, the significance of burst release cannot be entirely ignored. Ertugliflozin research buy In this study, Ag doped mesoporous bioactive glasses (Ag-MBG) nanospheres were synthesized using modified Stöber method, then incorporated into poly L-lactic acid (PLLA) matrix to prepare the composite scaffolds via selective laser sintering (SLS) technology. Herein, Mesoporous bioactive glasses (MBG) sol had many negatively-charged silicon hydroxyl groups, which could adsorb positively-charged Ag ions by electrostatic interaction and eventually form Si-O-Ag bonds into MBG. Moreover, MBG promoted osteoblast colonization due to its continuous release of Si ions. The results showed the Ag-MBG/PLLA scaffold could sustainedly release Ag ions for 28 days, and exhibited significantly antibacterial ability against Escherichia coli, its bacterial inhibition rate was over 80%. In addition, the composite scaffold also showed good cytocompatibility. It may be concluded that the prepared Ag-MBG/PLLA scaffold has great potential to repair implant-associated bone infection.In part 1, we have investigated drug release by solid-solution single fibers comprising a sparingly water-soluble drug (ibuprofen) and a highly water-soluble dual excipient (low-molecular-weight hydroxypropyl methyl cellulose (HPMC) and polyoxyl stearate (POS)). In this part, fibrous dosage forms of the same formulation are prepared by 3D-micro-patterning, tested, and modeled. Upon immersion in a small volume of dissolution fluid, the dosage forms rapidly swelled and formed a low-viscosity medium, which subsequently dissolved. The dissolution time increased slightly with volume fraction of the fibers, φs, in the solid dosage form, but was less than 25 minutes even up to φs = 0.65. After dosage form dissolution, the fluid was supersaturated by a factor of two; the drug concentration then gradually decreased to solubility. The solubility was proportional to the concentration of POS, and was enhanced by a factor of six at φs = 0.65 (the most densely-packed dosage form). Theoretical models suggest that the dissolution fluid percolates the contiguous void space almost immediately, and the HPMC-POS fibers expand isotropically as water diffuses in.

Autoři článku: Fieldwelch9447 (Clay McNamara)