Feldmankaspersen4808

Z Iurium Wiki

In this study, the marine microalgae Skeletonema costatum and Nitzschia closterium were exposed to different forms of copper, such as a metal salt (Cu2+), a nano-metal (nano-Cu), and nano-metal oxide (nano-CuO). check details During a 96-h exposure to nanoparticles (NPs) and salt, the cell number, Cu2+ concentration in the culture medium, morphology, and intracellular amino acids were measured to assess the toxicity of the copper materials and the toxicity mechanism of the NPs. As results, the toxicity of Cu2+, nano-Cu, and nano-CuO to marine phytoplankton decreased in order. The EC50 values of Cu2+ and nano-Cu for S. costatum and N. closterium ranged from 0.356 to 0.991 mg/L and 0.663 to 2.455 mg/L, respectively. Nano-Cu inhibits the growth of marine phytoplankton by releasing Cu2+; however, nano-CuO is harmful to microalgae because of the effect of NPs. The secretion of extracellular polymeric substances by microalgae could also affect the toxicity of nano-Cu and nano-CuO to microalgae. S. costatum was more sensitive to copper than N. closterium. Cu2+, nano-Cu, and nano-CuO all reduced per-cell amino acids and the total output of algae-derived amino acids by affecting the growth of the phytoplankton. This study helps to understand the risk assessment of nano-Cu and nano-CuO to marine microalgae.Mineral-associated soil organic matter (MAOM) is seen as the key to soil carbon sequestration, but its stability often varies with types of exogenous organic materials. Fulvic acid and manure are ones of the exogenous organic materials used for the improvement of degraded soil. However, little is known about if and how fulvic acid and manure affect the stability of MAOM. Using a field experiment of four fertilization treatments (no fertilization, mineral fertilizers, fulvic acid, and manure) and a comprehensive meta-analysis using relevant studies published prior to January 2020, we investigated effects of exogenous fulvic acid and manure applications on four MAOM stability indexes association intensity, humus stabilization index, iron oxide complex coefficient, and aluminum oxide complex coefficient. Exogenous fulvic acid and manure applications increased soil organic carbon fractions by 26.04-48.47%, MAOM stability by 12.26-387.41%, and complexed iron/aluminum contents by 16.12-20.01%. Fulvic acid application increased MAOM stability by promoting mineral oxide complexation by 20.33% and manure application improved MAOM stability via increasing humus stabilization by 21-25%. Association intensity was positively correlated with contents of soil carbon fractions and the metal oxide complex coefficients were positively correlated with iron/aluminum oxide contents. Moreover, stable-humus exerted significantly positive direct and indirect effects on association intensity and humus stabilization index, while amorphous iron/aluminum content had significantly negative influences on metal oxide complex coefficients. The meta-analysis verified that long-term fulvic acid application improved MAOM stability more so than manure application in acidic soils. We recommend that strategies aiming to prevent land degradation should focus on the potential of fulvic acid as a soil amendment because it can significantly increase MAOM stability.Exposure to bisphenol A (BPA) contributes to neurological disorders, but the underlying mechanisms are still not completely understood. We studied the neurotoxic effect of BPA and how it promotes inflammation and alteration in the neurotransmission synthesis, release, and transmission. This study was also designed to investigate the neuroprotective effect of grape seed proanthocyanidins (GSPE) against BPA-induced neurotoxicity in rats. Rats were equally divided into 4 groups with 7 rats in each control group, BPA group, GSPE + BPA group, and GSPE group. Rats were orally treated with their respective doses (50 mg BPA/kg BW and/or 200 mg GSPE/kg BW) daily for 70 days. BPA elicits significant elevation in malondialdehyde (MDA) and nitric oxide (NO) associated with a significant reduction in glutathione (GSH), total thiols, glutathione peroxidase (GPx), superoxide dismutase (SOD), and glutathione-S-transferase (GST). link2 BPA exposure results in increased dopamine and serotonin levels, elevation in acetylcholinesterase (AChE) activity, and reduction in Na/K-ATPase and total ATPase activities in the brain. Also, BPA induces upregulation in the gene expression of the inflammatory markers, tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2), and in the tumor suppressor and pro-oxidant p53 protein. The pretreatment with GSPE attenuates or ameliorate all the oxidative and neurotoxic parameters induced by BPA. Our results suggest that GSPE has a promising role in modulating BPA-induced neuroinflammation and neurotoxicity and its antioxidant and free radical scavenging activities may in part be responsible for such effects.Very limited information on the magnitude and environmental impacts of both inorganic and organic forms of nitrogen (N) wet deposition is available in India. Molar concentrations of inorganic (NH4+ and NO3-) and organic N in rainwater were monitored at three different land use sites in Indo-Gangetic Plain (IGP) during the monsoon period (June-September) of 2017. It has been observed that dissolved organic N (DON) contributed significantly to the total dissolved N (TDN) ranging from 5 to 60%. Dissolved inorganic N (DIN = NH4+ + NO3-) concentration was recorded as high as 221.0 μmol L-1 at urban site to as low as 65.9 μmol L-1 at the rural site. A similar pattern was also observed for DON. NH4+ contribution to TDN had the order urban megacity (65%) > urban (70%) > rural (75%). Agriculture and animal husbandry are the primary sources of NH4+ emissions in the rural site. However, NO3- has shown a contrasting trend at these sites (25%, 15%, and 8%, respectively). Wet deposition fluxes of atmospheric TDN were observed to be higher at urban sites. This can be attributed to a variety of local sources such as vehicular emission, microbial emissions, biomass burning, human excreta due to higher population density, and transportation from surrounding areas, as observed from concentration weighted trajectories (CWT) model and cluster analysis. Upwind region of IGP has experienced major influence of air mass transported from agriculturally rich northwest part of India. However, both the downwind sites have experienced by-and-large the influence of south-westerly air masses originated over the Arabian Sea. This study has found that the DON contributes significantly to TDN, and therefore, its inclusion for nitrogen budget assessment in South Asia is emphasized.In this study, the safety and risk of fosthiazate as a nematicide against root-knot nematode in tomato and cherry tomato were evaluated. The dissipation and residue of fosthiazate for 28 days in tomatoes and cherry tomatoes were determined and studied by HPLC after simple, rapid pre-treatment. The mean recovery was 83.79~94.18%, and the relative standard deviations were 3.97~7.40%. Results showed that the half-lives of fosthiazate in tomatoes (4.81~5.37 days) were significantly lower than that in cherry tomatoes (5.25~5.73 days). At the pre-harvest interval (PHI) of 21 days, the residues of tomatoes and cherry tomatoes were 0.032~0.046 mg/kg, which were lower than the maximum residue level (MRL) established in China. The potential risks of fosthiazate exposure through the dietary intake of tomatoes and cherry tomatoes to different populations were also studied. According to the results of dietary risk assessment, the residual levels of fosthiazate were within the acceptable range of long-term dietary risk in different populations in China within the sampling interval of 21 days after the application of fosthiazate. Our results show that fosthiazate at 2250 g.a.i./ha in the field control of root-knot nematode has high safety and low risk, and can provide a reference for the safe and reasonable use of fosthiazate as a nematicide in the field.Nanomaterials are threatening the environment and human health, but there has been little discussion about the stability and mobility of nanoparticles (NPs) in saturated porous media at environmentally relevant concentrations of surfactants, which is a knowledge gap in exploring the fate of engineered NPs in groundwater. link3 Therefore, the influences of the anionic surfactant (sodium dodecylbenzene sulfonate, SDBS), the cationic surfactant (cetyltrimethylammonium bromide, CTAB), and the nonionic surfactant (Tween-80) with environmentally relevant concentrations of 0, 5, 10, and 20 mg/L on nano-TiO2 (nTiO2, negatively charged) and nano-CeO2 (nCeO2, positively charged) transport through saturated porous media were examined by column experiments. On the whole, with increasing SDBS concentration from 0 to 20 mg/L, the concentration peak of nTiO2 and nCeO2 in effluents increased by approximately 0.2 and 0.3 (dimensionless concentration, C/C0), respectively, because of enhanced stability and reduced aggregate size resulting from enhanced electrostatic and steric repulsions. By contrast, the transportability of NPs significantly decreased with increasing CTAB concentration due to the attachment of positive charges, which was opposite to the charge on the medium surface and facilitated the NP deposition. On the other hand, the addition of Tween-80 had no significant influence on the stability and mobility of nTiO2 and nCeO2. The results were also demonstrated by the colloid filtration theory (CFT) modeling and the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction calculations; it might promote the assessment and remediation of NP pollution in subsurface environments.Cemetery waste (CW) constitutes one of the streams of municipal waste (MW). Based on the available data, it can be said that it accounts for about 1% of the mass of MW being generated in Poland. CW management should be carried out selectively. It is estimated that the level of CW selective collection is lower than the average level achieved for MW. This paper presents some solutions concerning the selective collection of CW implemented in selected municipal and denominational cemeteries in Poland. Based on research conducted, the levels of proper separation of glass and biodegradable waste in containers for their selective collection were determined, accordingly as >85% and >80%. Due to the contamination with paraffin residues, the purity of the selectively collected plastic fraction was lower than 20%. The human factor was recognized as the most significant determining efficiency of the selective collection of CW. Therefore, further education of society, as well as promoting good practices in the field of CW management, should be regarded as desirable.The ongoing decline in anuran populations is linked primarily to the effects of stressor agents such as pathogens, pesticides, alterations of natural landscapes, and the introduction of exotic species. Most studies that have evaluated the effects of these stressors have focused on a single component, which is the opposite of the reality of most natural environments, where anuran populations tend to suffer the influence of multiple agents simultaneously. Studies of the effects of the interaction between these components are extremely important, given that one agent may potentialize (synergistic effect) or weaken another (antagonistic effect) or, in some cases, have a neutral effect. The present study is based on the scientometric analysis of three bibliographic databases (ISI Web of Science, Scopus, and PubMed), which identified 1376 papers that reported on the global decline of anuran populations, although only 172 of these studies focused on the interactive effects of environmental stressors. Synergistic effects were the most frequent type of interaction, followed by antagonistic effects, and a small number of studies that found no clear interaction between the stressors.

Autoři článku: Feldmankaspersen4808 (Olsson Noer)