Feddersennance4129

Z Iurium Wiki

In anticipation of the hybrid utilisation of the radio frequency (RF) wireless transceiver technology embedded in future smart Li-ion battery cells to deliver hybrid links based on power line communication (PLC) and wireless connections, herein we present an empirical high-frequency investigation of the direct current (DC) bus. The focus is to determine, via statistical tools including correlation coefficient (CC), root mean squared error (RMSE) and feature selective validation (FSV) method, the impedance and signal change impact on a possible communication link when fully charged cells are present or completely missing from the bus. Moreover, to establish if technological differences may be accounted for during the empirical experiments, Li-ion cells from two different manufacturers were selected and connected via three subsequent capacitive couplings of 1 µF, 1 nF and 1 pF. According to a methodical comparison by employing CC, RMSE, and FSV over the measured impedance and signal attenuation, this study has shown that the physical DC network is the dominant impedance at high frequencies and that the signal attenuation on the DC line supports communication in the investigated spectrum. The reported findings are critical for in situ hybrid PLC and wireless communication implementation of BMS for Li-ion systems supported through only one RF transceiver.Aiming at the problem of Transformers lack of local spatial receptive field and discontinuous boundary loss in rotating object detection, in this paper, we propose a Transformer-based high-precision rotating object detection model (RODFormer). Firstly, RODFormer uses a structured transformer architecture to collect feature information of different resolutions to improve the collection range of feature information. Secondly, a new feed-forward network (spatial-FFN) is constructed. Spatial-FFN fuses the local spatial features of 3 × 3 depthwise separable convolutions with the global channel features of multilayer perceptron (MLP) to solve the deficiencies of FFN in local spatial modeling. Finally, based on the space-FFN architecture, a detection head is built using the CIOU-smooth L1 loss function and only returns to the horizontal frame when the rotating frame is close to the horizontal, so as to alleviate the loss discontinuity of the rotating frame. Ablation experiments of RODFormer on the DOTA dataset show that the Transformer-structured module, the spatial-FFN module and the CIOU-smooth L1 loss function module are all effective in improving the detection accuracy of RODFormer. Compared with 12 rotating object detection models on the DOTA dataset, RODFormer has the highest average detection accuracy (up to 75.60%), that is, RODFormer is more competitive in rotating object detection accuracy.This paper deals with the challenging problem of scheduling users' tasks, while taking into consideration users' quality of service (QoS) requirements, with the objective of reducing the energy consumption of physical machines. This paper presents a model to analyze the current state of the running tasks according to the results of the QoS prediction assigned by an ARIMA prediction model optimized with Kalman filter. Then, we calculate a scheduling policy with a combined particle swarm optimization (PSO) and gravitational search algorithm (GSA) algorithms according to the QoS status analysis. Experimental results show that the proposed HPSO algorithm reduces resources consumption 16.51% more than the original hybrid algorithm, and the violation of service-level agreement (SLA) is 0.053% less when the optimized prediction model is used.Neuropathic pain in people with spinal cord injury is thought to be due to altered central neuronal activity. A novel therapeutic intervention using virtual reality (VR) head-mounted devices was investigated in this study for pain relief. Given the potential links to neuronal activity, the aim of the current study was to determine whether use of VR was associated with corresponding changes in electroencephalography (EEG) patterns linked to the presence of neuropathic pain. Using a within-subject, randomised cross-over pilot trial, we compared EEG activity for three conditions no task eyes open state, 2D screen task and 3D VR task. We found an increase in delta activity in frontal regions for 3D VR with a decrease in theta activity. There was also a consistent decrease in relative alpha band (8-12 Hz) and an increase in low gamma (30-45 Hz) power during 2D screen and 3D VR corresponding, with reduced self-reported pain. Using the nonlinear and non-oscillatory method of extracting fractal dimensions, we found increases in brain complexity during 2D screen and 3D VR. We successfully classified the 3D VR condition from 2D screen and eyes opened no task conditions with an overall accuracy of 80.3%. The findings in this study have implications for using VR applications as a therapeutic intervention for neuropathic pain in people with spinal cord injury.Drone advancements have ushered in new trends and possibilities in a variety of sectors, particularly for small-sized drones. Drones provide navigational interlocation services, which are made possible by the Internet of Things (IoT). Drone networks, on the other hand, are subject to privacy and security risks due to design flaws. To achieve the desired performance, it is necessary to create a protected network. The goal of the current study is to look at recent privacy and security concerns influencing the network of drones (NoD). The current research emphasizes the importance of a security-empowered drone network to prevent interception and intrusion. A hybrid ML technique of logistic regression and random forest is used for the purpose of classification of data instances for maximal efficacy. By incorporating sophisticated artificial-intelligence-inspired techniques into the framework of a NoD, the proposed technique mitigates cybersecurity vulnerabilities while making the NoD protected and secure. For validation purposes, the suggested technique is tested against a challenging dataset, registering enhanced performance results in terms of temporal efficacy (34.56 s), statistical measures (precision (97.68%), accuracy (98.58%), recall (98.59%), F-measure (99.01%), reliability (94.69%), and stability (0.73).Over the past decade, gait recognition had gained a lot of attention in various research and industrial domains. These include remote surveillance, border control, medical rehabilitation, emotion detection from posture, fall detection, and sports training. The main advantages of identifying a person by their gait include unobtrusiveness, acceptance, and low costs. This paper proposes a convolutional neural network KinectGaitNet for Kinect-based gait recognition. The 3D coordinates of each of the body joints over the gait cycle are transformed to create a unique input representation. The proposed KinectGaitNet is trained directly using the 3D input representation without the necessity of the handcrafted features. The KinectGaitNet design allows avoiding gait cycle resampling, and the residual learning method ensures high accuracy without the degradation problem. The proposed deep learning architecture surpasses the recognition performance of all state-of-the-art methods for Kinect-based gait recognition by achieving 96.91% accuracy on UPCV and 99.33% accuracy on the KGB dataset. The method is the first, to the best of our knowledge, deep learning-based architecture that is based on a unique 3D input representation of joint coordinates. It achieves performance higher than previous traditional and deep learning methods, with fewer parameters and shorter inference time.Research on the stress state of rock mass is essential for revealing the distribution characteristics and evolution law of the surrounding rock stress field in the roadway, studying the coal-rock dynamic disaster and the design of roadway support. This thesis proposes a three-dimensional stress monitoring method for surrounding rocks based on fiber Bragg grating (FBG) sensing technology and a cube-shaped three-dimensional stress fiber grating sensor is developed based on the principle of this monitoring method. According to the fiber grating strain obtained by numerical simulation, the calculated three-dimensional stress value is basically consistent with the theoretical value. MK-5108 manufacturer The margin of error was plus or minus one percentage point. The sensing performance of the sensor was tested using a uniaxial compression experiment instead of a triaxial compression experiment. The experimental results show that in the range of 0~50 Mpa, the sensor's sensitivity to X, Y and Z axis stress is 25.51, 25.97 and 24.86 pm/Mpa, respectively. The relative error of measured stress is less than 4%. Meanwhile, the sensor has good linearity and repeatability, and has broad application prospects in the field of underground engineering safety monitoring such as in coal mines and tunnels.The paper focuses on the application of new orthogonal transforms in digital watermarking. Novel types of transforms and their characteristics are presented. Potential methods for watermark embedding and recovery are also proposed. They assume embedding hidden information in the transform domains using the luminance channel of the original image. Image spectra are obtained by dividing the original image into smaller blocks that then are further processed by performing the forward transform operation. A watermark is embedded by modifying the spectral coefficients with relatively low values. Since there are various types of transforms, the latter process is realized in an adaptive manner. The proposed solutions were evaluated by measuring the level of visual distortion with respect to the total size of the inserted data. Additionally, the bit error rate (BER) in the recovery phase is also analyzed. The elaborated methods seem to be useful for applications in digital signal and image processing where high imperceptibility and low BER are of great importance. New orthogonal transforms were proved to be useful in watermarking tasks, and in some cases, they can even outperform the classic DCT approach.The automatic positioning of machines in a large number of application areas is an important aspect of automation. Today, this is often done using classic geodetic sensors such as Global Navigation Satellite Systems (GNSS) and robotic total stations. In this work, a stereo camera system was developed that localizes a machine at high frequency and serves as an alternative to the previously mentioned sensors. For this purpose, algorithms were developed that detect active markers on the machine in a stereo image pair, find stereo point correspondences, and estimate the pose of the machine from these. Theoretical influences and accuracies for different systems were estimated with a Monte Carlo simulation, on the basis of which the stereo camera system was designed. Field measurements were used to evaluate the actual achievable accuracies and the robustness of the prototype system. The comparison is present with reference measurements with a laser tracker. The estimated object pose achieved accuracies higher than 16 mm with the translation components and accuracies higher than 3 mrad with the rotation components. As a result, 3D point accuracies higher than 16 mm were achieved by the machine. For the first time, a prototype could be developed that represents an alternative, powerful image-based localization method for machines to the classical geodetic sensors.

Autoři článku: Feddersennance4129 (Boyette Roche)