Estradamckay3933

Z Iurium Wiki

NCT00599807.The genome size varies widely among angiosperms but only a few clades present huge variation at a low phylogenetic level. Among diploid species of the genus Cuscuta the genome size increased enormously in at least two independent lineages in species of subgenus Monogynella and in at least one species (C. indecora) of the subgenus Grammica. Curiously, the independent events lead to similar karyotypes, with 2n = 30 mostly metacentric chromosomes. In this paper we compared the patterns of heterochromatic bands and rDNA sites of C. indecora and C. monogyna, aiming to evaluate the role of these repetitive fractions in these karyotypes. We found out that the large genomes of these species were incremented by a huge number of small heterochromatic CMA+ and DAPI+ bands and 5S and 35 rDNA sites, most of them clearly colocalized with CMA+ bands. Silver nitrate impregnation revealed that the maximum number of nucleoli per nucleus was low in both species, suggesting that some of these sites may be inactive. Noteworthy, the tandem repeats did not generate large bands or sites but rather dozens of small blocks dispersed throughout the chromosomes, apparently contributing to conserve the original karyotype symmetry.The grasshopper Rhammatocerus brasiliensis shows polymorphism of B chromosomes, but the magnitude of B-chromosome occurrence and the factors that may contribute to their dispersion in the species remain unknown thus far. The present study analyzed the occurrence and dispersion of B chromosomes in R. brasiliensis individuals from 21 populations widely distributed in the Brazilian Northeast. The genetic connectivity between 10 populations was verified through analysis of ISSR markers from 200 individuals. Of the 21 populations, 19 presented individuals with one B chromosome, three with two, and one with three B chromosomes. The B chromosome is of medium size and constitutive heterochromatin (CH) located in the pericentromeric region. A variant B chromosome was observed in three populations, similar in size to that of chromosome X, gap and CH, and located in the terminal region. B chromosome frequencies in different populations varied from 0% to 18,8%, mean 8,5%. The wide distribution of the B chromosome is likely a consequence of the positive gene flow among the analyzed populations. B-chromosome occurrence in populations of R. brasiliensis possibly follows the population genetic structure of the species and, owing to the existence of a variant, its origin may not be recent.Cytogenetic analyses of the Suboscines species are still scarce, and so far, there is no karyotype description of any species belonging to the family Conopophagidae. Thus, the aim of this study is to describe and analyze the karyotype of Conopophaga lineata by chromosome painting using Gallus gallus (GGA) probes and to identify the location of the 18/28S rDNA cluster. Metaphases were obtained from fibroblast culture from two individuals of C. lineata. We observed a diploid number of 2n=78. GGA probes showed that most ancestral syntenies are conserved, except for the fission of GGA1 and GGA2, into two distinct pairs each. We identified the location of 18S rDNA genes in a pair of microchromosomes. The fission of the syntenic group corresponding to GGA2 was observed in other Furnariida, and hence may correspond to a chromosomal synapomorphy for the species of Parvorder Furnariida.The suppression of density fluctuations at different length scales is the hallmark of hyperuniformity. Here, we explore the presence of this hidden order in a manybody interacting model of biological tissue, known to exhibit a transition, or sharp crossover, from a solid to a fluid like phase. learn more We show that the density fluctuations in the rigid phase are only suppressed up to a finite lengthscale. This length scale monotonically increases and grows rapidly as we approach the fluid phase reminiscent to divergent behavior at a critical point, such that the system is effectively hyperuniform in the fluid phase. Furthermore, complementary behavior of the structure factor across the critical point also indicates that hyperuniformity found in the fluid phase is stealthy.Microenvironmental parameters, including hypoxia, pH, polarity, viscosity and temperature, play pivotal roles in controlling the biological, physical or chemical behaviors of local molecules. Abnormal changes in these parameters would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Recently, a number of phosphorescent Ir(iii) complexes have been designed to respond to such parameters due to their attractive properties such as high photostability, long emission lifetimes, and environment-sensitive emission profiles. This review aims to provide a summary of the progress achieved in developing iridium-based probes responding to microenvironmental parameters in biological systems in recent years for diagnosis and treatment of diseases such as cancer and diabetes.Ion pairing can strongly affect the rates of electron transfer reactions. To explain this effect, we propose a model Hamiltonian that describes the interactions between the pairing ion and the reactant, solvent and inner sphere reorganization, and bond breaking. Explicit expressions for the energies of the initial and final states, and for the energy of activation are derived in the weak adiabatic limit. The model is applied to the reduction of Cu(ii) in the presence of chloride ions. For this purpose, the pertinent system parameters are obtained from density functional theory. Our model explains why the chloride ion enhances the rate of the first electron transfer in copper deposition.Hydrogel-based multifunctional materials have attracted much attention. In this work, novel mineralized hydrogels were fabricated through physically cross-linked polyvinylpyrrolidone (PVP) and CaCO3. The mineralized hydrogels were prepared by simply mixing CaCl2, Na2CO3, and PVP in aqueous solutions. The CO32- induced the aggregation of the PVP chains and the CaCO3 particles in situ generated in the aqueous solution worked as fillers to strengthen the hydrogels. Based on this method, other kinds of mineralized hydrogels were prepared by replacing the Ca2+ with different metal ions. The mineralized hydrogels displayed shapeable, self-healing and thixotropic properties. Moreover, the mineralized hydrogel-based sensor showed good and stable sensitivity to compressive pressure, and could be used to monitor human actions. This work presents a facile method for preparing mineralized hydrogels, which are promising for various applications due to their outstanding properties.

Autoři článku: Estradamckay3933 (Kelly Boykin)